预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进的BP算法在股市预测中的应用 Title:ImprovedBackpropagationAlgorithmforStockMarketPrediction Introduction: Predictingstockmarkettrendsisacomplexandchallengingtaskduetothecomplexdynamicsandinherentvolatilityoffinancialmarkets.Accuratepredictionscanprovidevaluableinsightsforinvestorsandtraderstomakeinformeddecisions.TheBackpropagationNeuralNetwork(BPNN)algorithmhasbeenapopulartoolforstockmarketprediction,butithaslimitationsinhandlingnoisyandnon-lineardata. ThispaperaimstopresentanimprovedversionoftheBPNNalgorithmforstockmarketprediction.Theproposedalgorithmincorporatesadvancementsinneuralnetworktechniques,datapreprocessing,andmodeloptimizationtoenhancetheaccuracyandreliabilityofpredictions. 1.DataPreprocessing: Datapreprocessingplaysacrucialroleinstockmarketprediction.Theproposedalgorithmfirstfocusesonhandlingnoisyandnon-lineardata.Techniquessuchasdatacleaning,normalization,andfeatureselectioncanhelptoeliminateoutliers,standardizedata,andreducedimensionality,respectively.Additionally,timeseriesanalysiscancapturetrends,seasonality,andothertemporalpatternsinthestockmarketdata. 2.NeuralNetworkArchitecture: ThetraditionalBPNNmodelhasoneinputlayer,oneormorehiddenlayers,andoneoutputlayer.Intheimprovedalgorithm,thenumberofhiddenlayersandneuronsineachlayercanbeadjustedbasedonthecomplexityandcharacteristicsofthestockmarketdata.Theactivationfunctionsusedintheneuronsalsoplayavitalroleincapturingnon-linearrelationships.Commonactivationfunctionssuchassigmoid,ReLU,andtanhcanbeexploredtoidentifythemostsuitablefunctionforthespecificpredictionproblem. 3.TrainingAlgorithm: ToimprovethetrainingspeedandconvergenceoftheBPNN,severalalgorithmscanbeintegrated.Oneexampleistheuseofstochasticgradientdescentwithadaptivelearningratemethods,suchasAdaGradorRMSProp.Thesealgorithmsadjustthelearningrateduringtrainingtopreventovershootingandfacilitatefasterconvergence.Additionally,techniqueslikedropoutregularizationandbatchnormalizationcanpreventoverfittingandimprovethegeneralizationabilityofthemodel. 4.EnsembleTec