预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

影像与激光雷达数据的城市地物信息提取21.研究区及数据2.研究方法2.1数据预处理获取地物类型最佳分割尺度:如图5所示的分割质量曲线图,其中建设用地包括建筑物、道路、空地;林地包括树木及草地。从图中可看出随着分割尺度的增大,p值减少,r值增加,过分割现象减少,欠分割现象增多,而m2为这两种度量的加权和,不存在偏向性。因此最佳分割尺度一般取m2最大值处,若m2近似则选取p值较大处,得出各类地物类型的最佳分割尺度。树木与草地为33,道路与空地为45,阴影为18。2.3对象分类 特征选择后采用两步法提取城市地物,首先采用多分类器组合(K近邻算法、神经元网络及SVM_RBF)对城市地物进行分类,得到如图6所示的分类结果。由于城市地区存在高层建筑及树木,分类受阴影的影响较大,因此定本文在得出初步分类结果后采用易康5.0将阴影区域进行分割,并基于规则将阴影区域依次分为:阴影下植被、阴影下建筑物、阴影下道路、阴影下空地、纯阴影5类。 图7为A区最终分类结果,利用混淆矩阵法进行分类精度评价,总体精度为93.1%,如表2所示 2.4方法检验3结束语MonitoringcoalfiresinDatongcoalfieldusingmulti-sourceremotesensingdataAbstract:TheDatongcoalfieldislocatedinnorthernShanxiProvince,Chinaapproximatelyfrom39°52′to40°10′northlatitudeand112°49′32″to113°9′30″westlongitude。Ithasacomplexterrainwithanaveragealtitudeofmorethan1200m.ThestudiedareaislocatedintheMajiliangminingareaCoalfiresmainlyoccurintheNo.2Jurassiccoalseamsintheminingarea,30mto130mbelowthesurface,withanaveragethicknessofabout1m。3Multi-sourceremotesensingmonitoring3.1CoalfiremonitoringusingLandsatthermalinfraredband(a)R(Band5),G(Band4)andB(Band3)compositeimageswith15mspatialresolution(b)−(f)temperaturedistributionretrievalbyLandsatthermalinfraredbandwith60mspatialresolution3.2CoalfiremonitoringusingUAVBycontrast,comparedwithsatelliteremotesensing,UAVhasmanyadva-ntages.Itismoreflexibleintermsofworkingtimeandregion,hashigherspatialresolution(morethan0.2m),andiscosteffective.Itprovidesmuchbetterimagedataforgroundfissures.Fig4UAVimagewith0.2mspatialresolutionabletocaturegroundfissureincoalfireregionsAccordingtothetextureinformation,linearfeature,andbrightnessofthegroundfissures,aknowledgemodelwasestablishedtofacilitatetheautomaticextractionofgroundfissures.Thestepsareasfollows.1)Occurrence-basedvariance,cooccurrencebasedvariance,datarange,andcontrastfiltersareusedfortheUAVimagetoobtainthetextureinformationinthefissuredareabyamovingwindow.基于方差的发生与共生? 2)Principlecomponentanalysis(PCA)andFisherlineardiscrimination(线性判别分析)analysisarethenperformedtoextractthelinearfeaturesofthearea. 3)Agraylevelstatisti