预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于流量特征建模的网络异常行为检测技术 Title:NetworkAnomalyDetectionTechniquesBasedonTrafficFeatureModeling Abstract: Withtherapiddevelopmentofnetworktechnology,ensuringthesecurityandstabilityofcomputernetworkshasbecomeacriticaltask.Networkanomalydetectionplaysapivotalroleindetectingandpreventingmaliciousactivities,suchasintrusionattempts,denial-of-serviceattacks,andmalwareinfections.Thispaperfocusesonnetworkanomalydetectiontechniquesbasedontrafficfeaturemodeling.Variousmethodsareexplored,includingstatisticalanalysis,machinelearning,anddeeplearning,toeffectivelyidentifyabnormalnetworkbehaviors.Experimentalresultsdemonstratetheefficacyofthesetechniquesinreal-worldscenarios. 1.Introduction Networkanomalydetectionaimstoidentifydeviationsfromnormalnetworkbehavior,enablingtimelyresponsestopotentialsecuritythreats.Traditionalsignature-basedmethodsareeffectiveforknownattacks,buttheyfailtodetectzero-dayattacksandnovelanomalies.Thus,trafficfeaturemodelinghasemergedasanalternativeapproachthatfocusesonextractingandanalyzingnetworktrafficpropertiestoidentifyabnormalbehaviors. 2.StatisticalAnalysis-BasedTechniques Statisticalanalysistechniquesemploymathematicalandstatisticalmodelstoanalyzenetworktrafficpatterns.Theyareparticularlyusefulfordetectingsimpleanomalies,suchassuddenspikesordropsintrafficvolume,unusualpacketsizes,andabnormalportusage.Thissectiondiscussescommonlyusedstatisticalanalysistechniques,suchasmovingaverage,standarddeviation,andanomalyscorecomputation. 3.MachineLearning-BasedTechniques Machinelearningtechniquesleveragehistoricaltrafficdatatobuildmodelsthatcanclassifynetworkbehaviorsasnormalorabnormal.Thesetechniquesarecapableofdetectingcomplexandpreviouslyunseenanomalies.Commonlyusedmachinelearningalgorithms,includingdecisiontrees,randomforests,supportvectormachines,andneuralnetworks,aredescribedinthissection.Theselectionofappropriatefeatures,featureengineering,andmodelevaluationmetricsarealsodiscussed. 4.DeepLearning-BasedTechniques Deeplearningmethods,specificallydeepneuralnetwor