预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于深度学习的视频关键帧提取与视频检索 Title:DeepLearning-basedVideoKeyframeExtractionandVideoRetrieval Abstract: Videoanalysisandretrievalarecriticaltasksinmultimediaapplications.Keyframeextractionplaysacrucialroleinsummarizingvideoseffectivelyandefficiently.Inaddition,videoretrievalsystemsrelyonaccurateandinformativekeyframestoprovideuserswithbettersearchresults.Withtherecentadvancementsindeeplearningtechniques,ithasbecomefeasibletoleveragetheirpowerforkeyframeextractionandvideoretrievaltasks.Thispaperexplorestheapplicationofdeeplearninginvideokeyframeextractionandvideoretrieval,providinganoverviewofrelevantresearch,techniques,andchallenges. 1.Introduction(150words) Videosareapopularformofmediathatgeneratetremendousamountsofdata.Consequently,theneedforefficientvideoanalysisandretrievalhasbecomeincreasinglyimportantinvariousdomainssuchassurveillance,entertainment,andeducation.Videokeyframeextraction,astheprocessofselectingrepresentativeframesfromavideosequence,playsavitalroleinvideosummarization.Deeplearning,withitsabilitytolearnhierarchicalrepresentationsfromvastamountsofdata,offersapromisingapproachtoautomaticallyextractrelevantandinformativekeyframes.Moreover,videoretrievalsystemscanleveragedeeplearningmodelstoenhancesearchaccuracybymatchingqueryframeswithkeyframes. 2.VideoKeyframeExtraction(300words) 2.1TraditionalMethods 2.2DeepLearningApproaches 2.2.1ConvolutionalNeuralNetworks(CNN) 2.2.2RecurrentNeuralNetworks(RNN) 2.2.3GenerativeAdversarialNetworks(GAN) 2.2.4One-shotLearningModels 2.3EvaluationMetrics 3.VideoRetrieval(300words) 3.1TraditionalApproaches 3.2DeepLearning-basedRetrievalMethods 3.2.1ConvolutionalNeuralNetworks(CNN)forFeatureExtraction 3.2.2SiameseNetworksforSimilarityMatching 3.2.3RecurrentNeuralNetworks(RNN)forTemporalUnderstanding 3.2.4AttentionMechanismsforVideoContextUnderstanding 3.3EvaluationMetrics 4.ChallengesandFutureDirections(300words) 4.1DatasetandAnnotationChallenges 4.2GeneralizationandScalability 4.3Real-timeProcessingandEfficiency 4.4EthicalConside