预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于邻域驱动的粒子群算法 Title:Neighborhood-basedDrivenParticleSwarmOptimization Abstract: ParticleSwarmOptimization(PSO)isapopularandeffectiveoptimizationalgorithminspiredbysocialbehaviorofflockingbirdsandfish.However,thetraditionalPSOalgorithmlackslocalsearchcapability,limitingitsperformanceinsolvingcomplexoptimizationproblems.Toaddressthisissue,theNeighborhood-basedDrivenParticleSwarmOptimization(NDPSO)algorithmhasbeenproposed.ThispaperpresentsanoverviewoftheNDPSOalgorithmanddiscussesitsbenefitsandapplicationsinsolvingoptimizationproblems. 1.Introduction Inrecentyears,optimizationproblemshavegainedsignificantattentionacrossvariousdomains,includingengineering,finance,andmachinelearning.ParticleSwarmOptimization(PSO)emergedasapowerfulmetaheuristicalgorithmforsolvingoptimizationproblems.PSOmimicsthesocialbehaviorofbirdsorfishflockingbyiterativelyupdatingeachparticle'spositionandvelocitywithinasearchspace.However,theoriginalPSOalgorithmtendstoconvergetoasuboptimalsolutionduetoitsinsufficientlocalsearchcapability. 2.TraditionalPSOAlgorithm ThetraditionalPSOalgorithmmaintainsaglobalbestknownpositionfortheentireswarmandupdateseachparticle'svelocityandpositionbasedontheglobalbestandindividualbestpositions.Thisglobalinformationsharingmechanismallowsparticlestoexplorethesearchspaceeffectively.However,itoftenresultsinprematureconvergenceandstagnation. 3.Neighborhood-basedDrivenPSO TheNeighborhood-basedDrivenPSOalgorithmintroducesaconceptofneighborhoodintheswarm,whereeachparticleisinfluencedbyitsneighboringparticles.Thismechanismallowstheparticlestoperformlocalsearcheffectively,enhancingthealgorithm'sexplorationandexploitationabilities.Inthisalgorithm,theswarmisdividedintomultiplesubgroupsorneighborhoods,andeachparticleupdatesitsvelocityandpositionbasedonthelocalbestpositionwithinitsneighborhood. 4.NeighborhoodTopologies TherearedifferentneighborhoodtopologiesusedintheNDPSOalgorithm,includingring,random,andstartopologies.Eachtopologyhasitsadvantagesanddisadvantagesintermsofbalancingexpl