预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进粒子群算法的分布式电源在配电网中选址定容研究 Title:ResearchonOptimalSitingandSizingofDistributedGeneratorsinDistributionNetworksbasedonImprovedParticleSwarmOptimization Abstract: Withtheincreasingintegrationofrenewableenergyresourcesindistributionnetworks,theoptimalsitingandsizingofdistributedgeneratorsplaysacrucialroleinensuringefficientandreliablepowersupply.Thispaperpresentsastudyontheapplicationofimprovedparticleswarmoptimization(PSO)algorithmfortheoptimalsitingandsizingofdistributedgeneratorsindistributionnetworks.Theproposedalgorithmaddressesthechallengesoffindingtheoptimallocationsandcapacitiesofdistributedgeneratorsbyconsideringbothtechnicalandeconomicfactors.Simulationresultsdemonstratetheeffectivenessoftheproposedapproachinenhancingtheperformanceofdistributionnetworkswithdistributedgenerators. 1.Introduction: Therapidgrowthofdistributedenergyresources(DERs)suchassolarpanelsandwindturbines,coupledwiththeincreasingdemandforrenewableenergy,hasledtothewidespreadadoptionofdistributedgenerators(DGs)indistributionnetworks.DGscanprovidenumerousbenefits,includingvoltageregulation,lossreduction,andimprovedreliability.However,theoptimalsitingandsizingofDGsisachallengingtaskduetothecomplexnatureofdistributionnetworks.ThispaperproposesanimprovedPSOalgorithmtoovercomethesechallengesandenhancetheperformanceofdistributionnetworks. 2.LiteratureReview: ThissectionreviewstheexistingstudiesonthesitingandsizingofDGsindistributionnetworks.Thetraditionalmethods,suchasheuristicalgorithmsandgradient-basedmethods,havelimitationsinhandlingthenon-linearandnon-convexoptimizationproblemsassociatedwithDGsitingandsizing.ThePSOalgorithmhasgainedsignificantattentionduetoitsabilitytohandlesuchproblemseffectively.However,thetraditionalPSOalgorithmsuffersfromprematureconvergenceandslowconvergencespeed.Toaddresstheselimitations,variousimprovementshavebeenproposed,suchasdiversitymaintenance,mutationoperation,andhybridizationwithotheralgorithms. 3.Methodology: ThissectiondescribestheproposedimprovedPSOalgorithmfo