预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于卡尔曼滤波的动态权值融合 Title:DynamicWeightedFusionBasedonKalmanFilteringAlgorithm Abstract: Inrecentyears,fusionalgorithmshavegainedsignificantimportanceinvariousfields,includingcomputervision,sensornetworks,androbotics.ThispaperfocusesonthedynamicweightedfusionmethodbasedontheKalmanfilteringalgorithm.Thedynamicweightedfusionapproachaimstoimprovetheaccuracyandrobustnessofdatafusionbyadaptivelyadjustingtheweightsassignedtoeachsensorordatasourcebasedontheirperformanceandreliability. 1.Introduction Datafusion,alsoknownassensorfusionorinformationfusion,involvesintegratinginformationfrommultiplesourcestoobtainamoreaccurateandcompleteunderstandingofaparticularphenomenon.Traditionalfusionalgorithmsoftenassignfixedweightstoeachsource,assumingthatsourcesareequallyreliableorhaveknownpriorcharacteristics.However,theseassumptionsmaynotholdtrueinmanyreal-worldscenarios,leadingtosuboptimalfusionresults.Therefore,adynamicweightedfusionmethodisrequiredtoadjusttheweightsasthereliabilityandcharacteristicsofeachsourcechangeovertime. 2.KalmanFilteringAlgorithm TheKalmanfilteringalgorithmisawidelyusedtechniqueforstateestimationindynamicsystems.ItisbasedontheprinciplesofrecursiveestimationandBayesianinference,allowingfortheestimationofsystemstatesfromnoisyandincompletemeasurements.Thealgorithmmaintainsanestimateofthecurrentstateandupdatesititerativelyasnewmeasurementsarrive.Kalmanfilterequationsinvolvetwomainsteps:predictionandupdate.Thepredictionstepusesthesystemdynamicsmodeltoestimatethenextstate,whiletheupdatestepcorrectsthepredictionbasedonthemeasurementsobtained. 3.DynamicWeightedFusionFramework Theproposeddynamicweightedfusionframeworkconsistsofthreemaincomponents:sensor/modelfusion,weightupdate,andfusedoutputgeneration.Inthesensor/modelfusionstep,themeasurementsfromdifferentsourcesarecombinedusingtheKalmanfilteringalgorithm.Theweightupdatestepadjuststheweightsassignedtoeachsourcebasedontheirperformanceandreliability.Finally,thefusedoutputgenerationstepcomputestheweightedaverageofthefilter