预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于块分裂求解线性互补问题的新模系同步多分裂方法(英文) NewMonolithicSynchronizedMulti-SplittingMethodforSolvingLinearComplementarityProblemsbasedonBlockSplitting Abstract Inthispaper,weintroduceanewmonolithicsynchronizedmulti-splittingmethod,whichisappliedtosolvelinearcomplementarityproblemsthatarebasedonblocksplitting.Theproposedmethodhastheadvantageofprovidingafastconvergencerate,anditcanhandlelarge-scalelinearcomplementarityproblemsefficiently.Inaddition,itisimplementedinaparalleldistributedcomputingenvironment,whichfurtherenhancesitscomputationalefficiency.Numericalexperimentsareconductedtovalidateourclaims,andtheresultsshowthattheproposedmethodoutperformsexistingmethodsintermsofconvergencespeedandaccuracy. Introduction Linearcomplementarityproblems(LCPs)areubiquitousinvariousfields,suchaseconomics,engineering,andphysics.LCPsareaclassofnonlinearproblemsthatinvolvefindinganon-negativesolutionsubjecttolinearconstraints.ManyalgorithmshavebeendevelopedtosolveLCPs,includingtheLemke-Howsonalgorithm,thePathfollowingalgorithm,theProjectivemethodalgorithm,andtheProximalpointalgorithm.However,thesealgorithmssufferfrompoorconvergencepropertiesandhighcomputationalcostwhenappliedtolarge-scaleproblems. Recently,blocksplittingtechniqueshavebeenproposedtoimprovetheconvergencerateandcomputationalefficiencyofLCPalgorithms.Ouraimistoextendtheexistingblocksplittingtechniquestodevelopanewmonolithicsynchronizedmulti-splittingmethodthatcansolvelarge-scaleLCPsefficiently.Theproposedmethodisimplementedusingaparalleldistributedcomputingenvironment,whichfurtherenhancesitscomputationalefficiency. Methodology Theproposedmethodisbasedonblocksplitting,wheretheproblemissplitintoseveralsub-problems.Weuseamonolithicsynchronizedapproach,whereallthesub-problemsaresolvedsimultaneouslyusingasingleiterativeprocess.Thisapproachensuresglobalconvergence,anditavoidstheneedforanyparametertuning. Theproposedmethodusesamulti-splittingapproach,whereeachsub-problemissplitintomultiplesmallersub-problems.Thisapproachfurtherimprovestheco