预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进的稀疏度自适应匹配追踪算法的宽带压缩频谱感知(英文) WidebandCompressedSpectrumSensingBasedonImprovedSparsity-AdaptiveMatchingPursuitTrackingAlgorithm Introduction: CompressedSpectrumSensing(CSS)hasbeenwidelyusedinrecentyearsintheareaofspectrumsensing.Itisatechniquetocompressthereceivedsignalintoalow-dimensionalspace,andthenmeasurethesignal'sactivityinthatspace,whichprovidesanefficientwaytoutilizethelimitedresourcesofradiofrequencyspectrum.However,duetothelimitationsoftheCSSalgorithmitself,thesparsityofthesignalcanbedifficulttomeasureaccuratelyandcanleadtoalowdetectionrateandhighfalsealarmrate. Toaddresstheseissues,thispaperproposesanimprovedCSSalgorithmbasedonasparsity-adaptivematchingpursuittrackingalgorithm,whichcanadaptivelyadjustthesparsitylevelaccordingtothesignal'scharacteristics,therebygreatlyimprovingaccuratedetectionrateandreducingthefalsealarmrate. Methodology: Theproposedalgorithmconsistsofthreemainparts:signalcompression,sparsityestimationandactivitydetection.Firstly,thereceivedsignaliscompressedbyaprojectionmatrix.Then,thesparsityofthecompressedsignalisestimatedbyusingtheMatchingPursuitalgorithm.Thesparsitymeasureisthenusedtoadjustthesparsitylevelofthealgorithmtomatchtheactualsignal'scharacteristics.Finally,theactivefrequenciesaredetectedandtheenergyofthesignalisrecoveredbyinversetransform. Thesparsity-adaptivematchingpursuit(SAMP)algorithmisappliedtoimprovetheestimationaccuracyofsparsityinCSS.SAMPisatrackingalgorithmcomposedofagreedypursuitmethodandaKalmanfilter.Itcanadaptivelyadjustthesparsitylevelbyestimatingthesignal'sactivityinreal-timethroughthemeasurementobtainedfromthecompressedsignal.TheSAMPalgorithmalsohastheabilitytosuppressthenoiseandinterferenceinthemeasurementnoisetoavoidthefalsealarmrateinthesparsityestimationprocess. ResultsandAnalysis: Simulationresultsdemonstratetheeffectivenessoftheproposedalgorithm.ComparedwithtraditionalCSSalgorithms,suchasFixedSparsityMatchingPursuit(FSMP),theproposedsparsity-adaptivematchingpursuit(SAMP)algorithmimprovesthedetectionra