预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于BP神经网络和遗传算法的机箱壳注塑工艺参数多目标优化 Abstract: Inthispaper,weproposeamulti-objectiveoptimizationmodelbasedonBPneuralnetworkandgeneticalgorithmforinjectionmoldingprocessparametersofchassisshells.Ourgoalistoimprovethequalityofinjectionmoldedproductswhilereducingproductioncosts.Theproposedmodelisbasedontheprincipleofmachinelearningandgeneticalgorithm,whichcanautomaticallyadjusttheapplicableparametersduringtheinjectionmoldingprocess,suchasinjectionpressure,injectionspeed,andmoldtemperature,toachievethebestresults.Weconductedexperimentsusingreal-worlddatasetsandtheresultsdemonstratedthattheproposedmodeliseffectiveinimprovingproductqualityandreducingproductioncosts. Introduction: Injectionmoldingisawidelyusedmanufacturingprocessforproducingplasticproducts.Thequalityofinjectionmoldedproductsislargelydeterminedbytheprocessparametersofinjectionmolding,suchasinjectionpressure,injectionspeed,moldtemperature,etc.Optimizationofinjectionmoldingprocessesisessentialforbusinessestoachievehigh-qualityproductsatlowerproductioncosts.Inthispaper,weproposeamulti-objectiveoptimizationmodelbasedonBPneuralnetworkandgeneticalgorithmtooptimizetheinjectionmoldingprocessparametersofchassisshells. Background: Chassisshellsareanimportantcomponentofvariouselectronicproducts.Theproductionofthesepartsinvolvescomplexinjectionmoldingprocesses.Thequalityofthefinishedproductisinfluencedbynumerousfactors,suchasmaterialproperties,molddesign,theflowofmoltenplastic,andprocessingparameters.Improvingthequalityofthesepartsrequirestheoptimizationofinjectionmoldingprocessparameters. Methodology: Theproposedmodelconsistsoftwomaincomponents;BPneuralnetworkandgeneticalgorithm.TheBPneuralnetworkisusedtopredictthequalityindicesofthemoldedparts,includingwarpage,shrinkage,andmechanicalproperties.Thesequalityindicesareusedasobjectivefunctionsinmulti-objectiveoptimization.Thegeneticalgorithmisusedtooptimizetheinjectionmoldingprocessparametersandsearchfortheoptimalsolutionthatachievesthedesiredqualityindiceswithminimalproductionc