预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于DenseNet的单目图像深度估计 Title:SingleImageDepthEstimationBasedonDenseNet Abstract: DepthestimationisacriticaltaskincomputervisionthataimstoestimatethedepthinformationofascenefromasingleRGBimage.Thispaperproposesanovelapproachforsingleimagedepthestimation,combiningthepowerofDenseNetarchitecturewithdeeplearningtechniques.TheproposedmethodleveragestherichfeatureextractioncapabilitiesofDenseNettolearndenseandcompactrepresentations,allowingforaccuratedepthestimation.Experimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedapproachcomparedtoexistingmethods. 1.Introduction Depthperceptionisanimportantaspectofhumanvisualperceptionandiscrucialformanyapplicationsincomputervision,includingautonomousdriving,augmentedreality,androbotics.Traditionalapproachestodepthestimationrelyonstereoimagingorstructuredlight,whichrequireadditionalsensorsorcomplexsetup.Singleimagedepthestimation,ontheotherhand,aimstoestimatedepthinformationfromasingleRGBimage,eliminatingtheneedforadditionalsensorsandfacilitatingreal-worldapplications. 2.RelatedWork Severalapproacheshavebeenproposedforsingleimagedepthestimation,includingtraditionalhandcraftedfeature-basedmethodsandmorerecentdeeplearning-basedtechniques.Handcraftedfeature-basedmethodsoftenrelyonengineeringfeaturesandemploymachinelearningalgorithmstoestimatedepth.However,suchmethodsstruggletocapturecomplexrelationshipsandlackgeneralizability.Deeplearning-basedtechniques,ontheotherhand,haveshowngreatpromiseindepthestimation,leveragingthepowerofconvolutionalneuralnetworks(CNNs)tolearncomplexfeaturesfromrawimagedata. 3.DenseNetArchitecture DenseNetisastate-of-the-artCNNarchitecturethathasdemonstratedexcellentperformanceinvariouscomputervisiontasks,suchasimageclassificationandobjectdetection.DenseNetintroducestheconceptofdenseconnections,whereeachlayerisdirectlyconnectedtoeveryotherlayerinafeed-forwardmanner.Thisdenseconnectivityenablesfeaturereuseandpromotesgradientflowthroughoutthenetwork,leadingtoimprovedfeaturelearningandcompactnetworkr