预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

变网格波动方程高阶有限差分正演模拟研究 Title:AHigh-OrderFiniteDifferenceMethodforSimulatingtheWaveEquationinaVaryingGrid Abstract: Thewaveequationplaysacrucialroleinvariousfieldsofscienceandengineering,includingseismicimaging,medicalimaging,andacousticsimulations.Accurateandefficientnumericalmethodsareessentialforsimulatingwaveequationsincomplexmedia.Inthispaper,weproposeahigh-orderfinitedifferencemethodtosimulatethewaveequationinavaryinggrid.Themethodtakesintoaccountthespatialvariationsofthewavepropagationvelocity,resultinginmoreaccurateandrealisticsimulations.Wepresentthemathematicalformulationofthemethodanddiscussitsimplementation.Numericalexperimentsdemonstratetheeffectivenessandefficiencyoftheproposedmethodincapturingwavephenomenaincomplexmedia. 1.Introduction Thewaveequationisafundamentalmathematicalmodelthatdescribesthepropagationofwavesinvariousphysicalsystems.Ithasapplicationsinawiderangeoffields,includinggeophysics,medicalimaging,andacoustics.Inmanypracticalscenarios,thewavepropagationvelocityisnotconstantandvariesinspace.Simulatingwavepropagationinsuchmediarequiresnumericalmethodsthatcanaccuratelyhandlethespatialvariationsofthewaveequation.Inthispaper,weproposeahigh-orderfinitedifferencemethodthatcansimulatethewaveequationinavaryinggrid. 2.MathematicalFormulation Westartbyderivingthewaveequationinavaryinggridsetting.Weconsidera2Dor3Dspatialdomainwithanon-uniformgridthatisdefinedbyafunctiondescribingthevariationsinthewavepropagationvelocity.Thewaveequationisthenmodifiedtoincludetermsaccountingforthegridvariations.Wepresentthemathematicalformulationofthemodifiedwaveequationanddiscusstheimplicationsofthenon-uniformgridonthenumericalsimulation. 3.High-OrderFiniteDifferenceMethod Tosolvethemodifiedwaveequation,wedevelopahigh-orderfinitedifferencemethod.Themethodemploysahigher-orderaccuratediscretizationschemethatcanaccuratelyrepresentthespatialvariationsofthegrid.Wediscussthedetailsofthefinitedifferenceapproximationanddescribethenumericalimplementationofthemethod.Wealsoaddressth