预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2019-2020年高考数学一模试卷(理科) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是() A.a≤2B.a≤1C.a≥1D.a≥2考点:集合的包含关系判断及应用.专题:计算题;函数的性质及应用.分析:根据集合A是B的子集,利用数轴帮助理解,可得实数a应为不小于a的实数,得到本题答案.解答:解:∵设A={x|1<x<2},B={x|x<a},且A⊆B, ∴结合数轴,可得2≤a,即a≥2 故选:D点评:本题给出两个数集的包含关系,求参数a的取值范围,着重考查了集合的包含关系判断及应用的知识,属于基础题. 2.(5分)已知复数z=,则|z|=() A.B.C.lD.2 考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:首先利用复数的除法运算把复数z化为a+bi的形式,然后直接代入模的公式求模.解答:解:z==. 所以|z|=. 故选C.点评:本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础的运算题. 3.(5分)一个底面是正三角形的三棱柱的侧视图如图所示,则该几何体的侧面积等于() A.B.6C.2D.2 考点:简单空间图形的三视图.专题:空间位置关系与距离.分析:由题意判断几何体的形状,集合三视图的数据求出侧面积.解答:解:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱, 侧面积为3×2×1=6, 故答案为:B.点评:本题考查三视图求解几何体的侧面积,考查空间想象能力,计算能力. 4.(5分)下列说法错误的是() A.在线性回归模型中,相关指数R2取值越大,模型的拟合效果越好B.对于具有相关关系的两个变量,相关系数r的绝对值越大,表明它们的线性相关性越强C.命题“∃x∈R.使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1<0”D.命题若x=y,则sin.r=siny”的逆否命题为真命题 考点:特称命题;命题的否定.专题:探究型.分析:A.利用相关指数R2取值意义进行判断.B.利用相关系数r的意义判断.C.利用特称命题的否定是全称命题进行判断.D.利用四种命题之间的关系进行判断.解答:解:A.相关指数R2来刻画回归效果,R2越大,说明模型的拟合效果越好,所以A正确. B.线性相关系数|r|越大,两个变量的线性相关性越强,所以B正确. C.命题“∃x∈R.使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”. D.点评:本题主要考查命题的真假判断,综合性较强,牵扯的知识点较多,要求熟练掌握相应的知识. 5.(5分)(2011•宝鸡模拟)若将函数的图象向左平移m(m>0)个单位后,所得图象关于y轴对称,则实数m的最小值为() A.B.C.D. 考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:函数=2cos(x+)图象向左平移m个单位可得y=2cos(x+m),由函数为偶函数 图象关于y轴对称,故可得此函数在y轴处取得函数的最值即2cos(m+=±2,求解即可解答:解:∵函数=2cos(x+)图象向左平移m个单位可得y=2cos(x+m) 根据偶函数的性质:图象关于y轴对称,故可得此函数在y轴处取得函数的最值 即2cos(m+=±2, 解得, m的最小值 故选C点评:本题主要考查了三角函数的辅助角公式的应用,函数的图象平移,偶函数的性质,三角函数的对称轴的应用,综合的知识比较多,但都是基本运用. 6.(5分)在△ABC中,a、b、c分别是角A、B、C的对边,且A=60°,c=5,a=7,则△ABC的面积等于() A.B.C.10D.10 考点:正弦定理.专题:计算题.分析:利用余弦定理a2=b2+c2﹣2accosA可求得b,即可求得△ABC的面积.解答:解:∵△ABC中,A=60°,c=5,a=7, ∴由余弦定理得:a2=b2+c2﹣2bccosA, 即49=b2+25﹣2×5b×, 解得b=8或b=﹣3(舍). ∴S△ABC=bcsinA=×8×5×=10. 故选C.点评:本题考查余弦定理与正弦定理的应用,求得b是关键,考查分析与运算能力,属于中档题. 7.(5分)在下列图象中,可能是函数y=cosx+lnx2的图象的是() A.B.C.D. 考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:令f(x)=cosx+lnx2(x≠0),可得f(﹣x)=f(x),f(x)是偶函数,其图象关于y轴对称.利用导数(x≠0),可知:当2>x>0时,y′>0.及f(π)=﹣1+2lnπ>0即可判断出.解答:解:令f(x)=cosx+lnx2(x≠0),则f(﹣x)=f(x),即f(x)是偶函数,其图象关于y轴对称.