预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

FMS设备在、离线状态监测和故障诊断集成技术 Title:IntegratedTechniquesforMonitoringandFaultDiagnosisofFMSDevicesinOnlineandOfflineStates Abstract: FlexibleManufacturingSystems(FMS)havebecomeprevalentinmodernmanufacturingindustriesduetotheircapabilitytocarryoutcomplexanddiverseproductionoperations.However,toensuretheirseamlessperformance,itiscrucialtomonitoranddiagnosethestatusandpossiblefaultsofFMSdevices.ThispaperaimstoexploretheintegratedtechniquesandtechnologiesthatenableeffectivemonitoringandfaultdiagnosisofFMSdevicesinbothonlineandofflinestates. 1.Introduction: FlexibleManufacturingSystems(FMS)consistofacombinationofautomatedmachines,robots,andcomputer-controlledprocessestoproduceawiderangeofproducts.Reliablemonitoringandefficientfaultdiagnosisofthesedevicesarevitalformaintainingsmoothoperations,minimizingdowntime,reducingcosts,andimprovingoverallproductivity.ThispaperdiscussestheintegrationoftechniquesthatenablethemonitoringandfaultdiagnosisofFMSdevicesinbothonlineandofflinestates. 2.OnlineMonitoring: Onlinemonitoringinvolvesreal-timedatacollectionandanalysistomonitorFMSdevicesduringtheirnormaloperation.Thistechniquerequirestheuseofvarioussensors,suchastemperaturesensors,pressuresensors,vibrationsensors,andcurrentsensors,todetectanomaliesordeviationsfromnormaloperatingconditions.Thecollecteddataisprocessedusingadvancedsignalprocessingalgorithmsandmachinelearningtechniquestoidentifyanypotentialissuesorfaults.Onlinemonitoringenablespromptdetectionofabnormalconditionsandfacilitatestimelyresponseandmaintenance. 3.OfflineMonitoring: OfflinemonitoringfocusesonanalyzinghistoricaldatafromFMSdevicestoidentifypatternsandtrendsthatmayleadtoafailureormalfunction.Thistechniqueutilizesdataloggingsystemstorecordrelevantparameters,suchasoperatingtime,load,temperature,andenergyconsumption,forsubsequentanalysis.Variousmethods,suchasstatisticalanalysis,datamining,andpatternrecognitionalgorithms,canbeappliedtoclassifythecollecteddataandpredictpotentialfaultsinFMSdevices.Byanalyzinghistoricaldata,oper