预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Hausdorff算子在函数空间上的有界性 Hausdorffoperatorisalinearoperatordefinedonthespaceofcontinuousfunctions,whichmapsagivenfunctiontoitssetofoscillationvalues.TheboundednessoftheHausdorffoperatoronfunctionspaceisanimportanttopicinthetheoryoffunctionalanalysis.Inthispaper,wewilldiscusstheboundednessoftheHausdorffoperatorandprovideaproofforitsboundednessonfunctionspaces. Tobeginwith,weintroducetheconceptoftheHausdorffoperator.LetXbeacompactmetricspaceandC(X)bethespaceofcontinuousfunctionsonX.ForanyfunctionfinC(X),theHausdorffoperatorisdefinedasfollows: H(f)={osc(f;K)|KisacompactsubsetofX}, whereosc(f;K)denotestheoscillationoffonthecompactsetK,definedby osc(f;K)=sup{f(x)-f(y)|x,y∈K}. Inotherwords,theHausdorffoperatormapseachfunctiontoasetofoscillationvaluesonallpossiblecompactsubsetsofX. Next,wewillprovetheboundednessoftheHausdorffoperatoronthespaceC(X).Todothis,weneedtoshowthatforanyfinC(X),thereexistsaconstantMsuchthat |osc(f;K)|≤M,forallcompactsubsetsKofX. Toprovethis,wewillusethefactthatfisacontinuousfunctiononthecompactmetricspaceX.ThisimpliesthatfisuniformlycontinuousonX,i.e.,foranyε>0,thereexistsaδ>0suchthat |f(x)-f(y)|<ε,forallx,y∈Xwith|x-y|<δ. Now,letKbeacompactsubsetofXandletε>0begiven.SinceKiscompact,itcanbecoveredbyafinitenumberofopenballsofradiusδ/2,i.e., K⊆⋃_{i=1}^{n}B(x_i,δ/2), whereB(x_i,δ/2)denotestheopenballcenteredatx_iwithradiusδ/2.SincefisuniformlycontinuousonX,wehave |f(x)-f(y)|<ε,forallx,y∈Xwith|x-y|<δ. Thisimpliesthat |f(x)-f(y)|<ε,forallx,y∈B(x_i,δ/2), foralli=1,2,...,n.Therefore,wehave osc(f;K)=sup{f(x)-f(y)|x,y∈K}≤sup{|f(x)-f(y)||x,y∈B(x_i,δ/2),i=1,2,...,n}≤ε, forallε>0.Hence,wecanconcludethat |osc(f;K)|≤ε,forallcompactsubsetsKofX. ThisprovestheboundednessoftheHausdorffoperatoronthespaceC(X),aswehaveshownthatthereexistsaconstantM=εsuchthat|osc(f;K)|≤M,forallcompactsubsetsKofXandforallfinC(X). Inconclusion,wehavediscussedtheboundednessoftheHausdorffoperatoronthespaceofcontinuousfunctions.Wehaveprovidedaproofforitsboundednessonfunctionspacesbyutilizingtheun