预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于高斯差分的风格化方法 摘要 风格化艺术是指将一幅图像转化成另一风格的艺术。风格化的主要挑战在于如何处理图像中的纹理和边缘等细节信息而不失真。本文介绍了基于高斯差分的风格化方法,该方法可以对图像进行风格化加强,同时保留原始图像的高频细节信息。本文通过实验验证了该方法的有效性。 关键词:高斯差分,风格化,纹理,边缘 Introduction Thegoalofstyletransferistotransformaninputimageintothestyleofanotherimage,ortoanewartisticstyle.Styletransferhasbeenwidelyappliedinvariousfields,suchasentertainment,advertising,anddesign.Manystyletransfermethodshavebeenproposedinrecentyears,suchasneuralstyletransfer,texturesynthesis-basedmethod,andLaplacianpyramid-basedmethod. However,thesemethodsoftensufferfromsomelimitationssuchaslossoffinedetails,inaccuratestyletransfer,andlongprocessingtime.Inthispaper,weproposeanewstyletransfermethodbasedonGaussiandifference,whichcanenhancethestyleoftheimagewhilepreservingthehigh-frequencydetailsoftheoriginalimage. Methodology Gaussiandifferenceisapopularmethodforimageprocessing,whichisusedtodetectedgesinimages.ThemethodinvolvesconvolvingtheimagewithtwoGaussianfiltersofdifferentsizesandthensubtractingtheresultsofthetwoconvolutions.Inotherwords,itcomputesthedifferencebetweentwosmoothedversionsoftheimage.Theresultingimagehighlightstheedgesoftheoriginalimage. OurstyletransfermethodisbasedontheGaussiandifferencemethod,whichcanbedescribedasfollows: 1.Preprocessing:Theinputimageisfirstpreprocessedtoextractitscontentandstylefeatures.Thecontentfeaturerepresentstheunderlyingstructureanddetailsoftheimage,whilethestylefeaturerepresentstheoverallappearanceandtextureoftheimage. 2.Styletransfer:ThestylefeatureisenhancedtoproduceastylizedimageusingaGaussianpyramid-basedmethod.TheGaussianpyramidisatechniquefordown-samplinghigh-resolutionimagesintoaseriesoflow-resolutionimages,eachwithasmallersizethanthepreviousone.Theresultingimagesformapyramid-likestructure,andeachlevelinthepyramidrepresentsadifferentscaleoftheimage. 3.High-frequencydetailsenhancement:Thehigh-frequencydetailsoftheoriginalimageareextractedusingtheGaussiandifferencemethod.Theresultingimagehighlightstheedgesandtextureoftheoriginalimage.Thehigh-frequencydetails