预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一类非线性系统的Hopf分岔分析与控制研究 Hopfbifurcationanalysisandcontrolforaclassofnonlinearsystems Introduction: Nonlinearsystemswithcomplexdynamicsarecommoninvariousfieldsofscienceandengineering.Hopfbifurcationisatypeofbifurcationthatoccursinnonlinearsystemswhenastablefixedpointlosesitsstabilityandchangestoalimitcycle.Hopfbifurcationiswidelyusedinfieldssuchasneuroscience,physics,andchaostheory.Inthispaper,wewillfocusontheHopfbifurcationanalysisandcontrolforaclassofnonlinearsystems. I.Hopfbifurcationanalysis: TheexistenceofHopfbifurcationinanonlinearsystemisdeterminedbythesignoftherealpartoftheeigenvaluesofthelinearizedsystematthefixedpoint.Specifically,Hopfbifurcationoccurswhentherealpartoftheeigenvaluesbecomeszero,andtheimaginarypartbecomesnonzero.Thisindicatesthatastablefixedpointchangesitsstabilityandalimitcycleemerges. Theamplitudeandfrequencyofthelimitcyclecanbedeterminedbythecentermanifoldtheoremandthenormalformtheory.Thesetheoriesprovideuswithawaytoanalyzethebehaviorofthesystemnearthebifurcationpointanddeterminethestabilityofthelimitcycle. II.ControlofHopfbifurcation: Hopfbifurcationoftenleadstoundesirablebehaviorinnonlinearsystems,suchasoscillationsandchaos.Therefore,controllingthestabilityofthelimitcycleisessentialinpracticalapplications.Onecommonapproachistousefeedbackcontrol. Feedbackcontrolinvolvesaddingacontrolsignaltotheoriginalsystemtostabilizethelimitcycle.Thecontrolsignalcanbedesignedbasedontheknowledgeofthesystemdynamicsandthedesiredbehaviorofthesystem.Forexample,wecanuseaproportional-integral(PI)controllertostabilizetheamplitudeandfrequencyofthelimitcycle. Anotherapproachistomodifythesystemparameterstochangethestabilityofthelimitcycle.Thiscanbedonebyvaryingtheparametersinthecontrolsignalorbyadjustingtheparametersoftheoriginalsystem.Themodifiedparametersshouldbechosentoensurethestabilityofthelimitcycleandavoidbifurcation. Conclusion: Hopfbifurcationisanimportantphenomenoninthedynamicsofnonlinearsystems.TheanalysisandcontrolofHopfbifurcationareessentialinmanypract