预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

配送中心动态分区拣货系统优化设计 Title:OptimizationDesignofDynamicPartitioningPickingSysteminDistributionCenters Abstract: Withtherapiddevelopmentofe-commerceandthedemandfortimelyandaccurateorderfulfillment,theroleofdistributioncentersinthesupplychainhasbecomeincreasinglyimportant.Thepickingprocessplaysacrucialroleintheefficiencyandaccuracyoforderfulfillment.Therefore,theoptimizationdesignofadynamicpartitioningpickingsystemhasbecomearesearchfocusindistributioncentermanagement. Introduction: Thispaperaimstoproposeanoptimizationdesignforthedynamicpartitioningpickingsystemindistributioncenters.Wewilldiscussthekeychallengesfacedbydistributioncentersinpickingoperations,presenttheconceptofdynamicpartitioningpicking,andexplorevariousstrategiestoimproveefficiencyandaccuracy. 1.ChallengesinPickingOperations: 1.1Increasingordervolumes:Withthegrowthofonlineshopping,distributioncentersfaceasignificantincreaseinthenumberoforderstobeprocessed,puttingpressureonthepickingprocess. 1.2Ordervariability:Ordersmayconsistofvarioustypesofproducts,sizes,andweights,whichaddscomplexitytothepickingprocess. 1.3Timeconstraints:Duetotheexpectationsofcustomersforfastdelivery,distributioncentersmustcompletepickingoperationswithintighttimeframes. 2.DynamicPartitioningPickingSystem: 2.1ConceptandPrinciple:Dynamicpartitioningpickingdividesthepickingareaintozones,witheachzonededicatedtoaspecificcategoryofproducts.Thisapproachimprovesefficiencybyreducingtraveltimeandeliminatingcongestion. 2.2Zonedetermination:Theappropriatenumberandsizeofzonesneedtobedeterminedconsideringthesizeofthepickingareaandthecharacteristicsoftheproducts. 2.3Zoneassignment:Anintelligentalgorithmisrequiredtoassignproductstozonesbasedonfactorssuchaspopularity,orderfrequency,andproductsize. 3.StrategiesforOptimization: 3.1Productclustering:Groupingsimilarproductstogethercanreducethetimerequiredforpicking,asemployeesdonothavetotravellongdistancestopickdifferentitems. 3.2Slottingoptimization:Slottingproductsbasedontheirpickfrequencyandpopularitycanm