预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

海量用电数据并行聚类分析 Title:ParallelClusteringAnalysisofMassiveElectricityConsumptionData Abstract: Withtherapiddevelopmentofelectricityinfrastructureandtheincreasingdemandforelectricity,thevolumeofelectricityconsumptiondatahasshownanexponentialgrowth.Analyzingthismassiveamountofdataisacrucialtaskforunderstandingconsumptionpatternsandmakinginformeddecisionsforenergymanagement.Clusteringanalysisisapowerfultechniquethatallowsfortheidentificationofdistinctconsumptionpatternsandtheformationofhomogeneousgroups.However,theanalysisofmassiveelectricityconsumptiondatapresentssignificantchallengesduetoitsvolume,variety,andvelocity.Thispaperpresentsaparallelclusteringanalysisapproachdesignedtoaddressthesechallengesbyleveragingthepowerofparallelcomputinganddistributedsystems.Experimentalresultsdemonstratetheeffectivenessandscalabilityofourapproachinhandlinglarge-scaleelectricityconsumptiondata. 1.Introduction Theavailabilityofmassiveelectricityconsumptiondataholdsgreatpotentialforoptimizingtheenergymanagementandplanningprocesses.Efficientlyanalyzingthisdatacanprovidevaluableinsightsintoenergyusagepatterns,peakperiods,andenergy-savingopportunities.However,thesheervolumeofdataposessignificantcomputationalchallenges.Traditionalsequentialclusteringalgorithmsdonotscalewellwithlargedatasets,makingtheirapplicationtothesedatasetscostlyandtime-consuming.Toovercomethesechallenges,parallelclusteringanalysistechniquescanbeutilized,enablingtheprocessingofmassivedatasetsinadistributedandparallelmanner. 2.RelatedWork Thissectiondiscussesexistingapproachesandtechniquesforelectricityconsumptiondataanalysis.Itexploresbothsequentialandparallelclusteringalgorithmsandhighlightstheirlimitationsinhandlinglarge-scaledata.Emphasisisplacedontheneedforparallelcomputingframeworksanddistributedsystemstoeffectivelyaddressthecomputationalchallengesassociatedwithanalyzingmassiveelectricityconsumptiondata. 3.Methodology Thissectionpresentstheproposedparallelclusteringanalysisapproachformassiveelectricityconsumptiondata