预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

求解FPRM电路极性优化问题的改进多目标粒子群算法 Abstract TheFPRMcircuitpolarizationoptimizationproblemisamulti-objectiveoptimizationproblem.Thispaperproposesanimprovedmulti-objectiveparticleswarmalgorithmtosolvetheFPRMcircuitpolarityoptimizationproblem.Firstly,thebasicprincipleandcharacteristicsoftheFPRMcircuitareintroduced.Secondly,themulti-objectiveoptimizationproblemandparticleswarmalgorithmarebrieflydescribed.Thirdly,theimprovementofthemulti-objectiveparticleswarmalgorithmincludesapplyinganewmechanismofadaptiveinertiaweightandmodifyingtheupdatingequationofthevelocityandmovablepositionintheparticleswarmalgorithm.Finally,thesimulationexperimentsontheFPRMcircuitunderdifferentinitializationmethodsandcomparedwithtraditionalparticleswarmalgorithmtoverifytheeffectivenessandreliabilityoftheproposedalgorithm. Keywords:FPRMcircuit,polarizationoptimization,multi-objectiveoptimization,particleswarmalgorithm Introduction FPRM(Feedbackresistivememory)circuitisanewtypeofassociativememorycircuitwhichusesoneormoreresistorstostoretheresistancevalueofthefeedbackcircuitasamemoryunit.Duetoitssimplestructure,lowpowerconsumption,fastswitchingspeed,non-volatileandhighintegration,ithasattractedextensiveattentioninmemorydesign,artificialneuralnetworks,andotherfields.ThepolarizationoptimizationoftheFPRMcircuitisanessentialstepinimprovingthememoryfunctionandoptimizationofthecircuit. ThepolarizationoptimizationoftheFPRMcircuitisamulti-objectiveoptimizationproblem.Polarizationoptimizationneedstofindouttheoptimalresistancevalueofthefeedbackcircuit,whichcanmakethestatevariableofthecircuitreachthelimitvaluequicklyandaccurately.Polarityoptimizationneedstoselectasuitabledirectionoftheresistorsinthefeedbackloopsothatthememoryretentiontimeislonger,thememorycapacityishigher,andtheenergyconsumptionislower.ThepolarizationandpolarityoptimizationobjectivesoftheFPRMcircuitaremutuallyinfluentialandconflicting,resultinginthedifficultyofobtainingasingleoptimalsolutionatthesametime. Particleswarmalgorithmisaswarmintelligenceoptim