预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进PSO优化RBFNN的短时交通流量预测方法 Title:ImprovedPSOOptimizationforShort-TermTrafficFlowPredictionusingRBFNN Abstract: Trafficflowpredictionplaysacriticalroleineffectivetrafficmanagement,congestionavoidance,andresourceallocationintransportationsystems.Inrecentyears,PSO(ParticleSwarmOptimization)hasbeenwidelyusedtooptimizeRBFNN(RadialBasisFunctionNeuralNetwork)modelsfortrafficflowpredictionduetoitsabilitytofindoptimalmodelparameters.However,theperformanceofthePSO-basedRBFNNmodelcanstillbefurtherimproved.ThispaperproposesanenhancedPSOoptimizationapproachforshort-termtrafficflowpredictionusingRBFNN,aimingtoenhancethepredictionaccuracyandrobustnessofthemodel. 1.Introduction Theaccuratepredictionoftrafficflowisofgreatsignificancefortrafficmanagementandefficientresourceallocationintransportationsystems.Traditionalstatisticalmethodsandmachinelearningalgorithmshaveshownlimitationsincapturingthecomplexandnonlinearpatternsoftrafficflow.RBFNNmodels,combinedwithPSOoptimization,havedemonstratedpromisingresultsintrafficflowprediction.However,existingPSO-basedRBFNNmodelsstillfacechallengesinachievinghigherpredictionaccuracyandrobustness. 2.RelatedWork ThissectionprovidesanoverviewoftheexistingliteratureontrafficflowpredictionandtheapplicationofPSOoptimizationinRBFNNmodels.Thelimitationsandchallengesofthecurrentapproachesarediscussed,highlightingtheneedforfurtherimprovement. 3.EnhancedPSOOptimizationforRBFNN ToimprovethepredictionaccuracyandrobustnessofthePSO-basedRBFNNmodel,severalenhancementsareproposedinthissection.Theseenhancementsinclude: 3.1HybridPSOAlgorithm AhybridPSOalgorithmisdesignedbyincorporatingalocalsearchmechanismbasedontheNelder-Meadalgorithm.ThislocalsearchmechanismaimstoenhancetheexplorationabilityofthePSOalgorithm,enablingittoescapefromlocaloptimaandfindbettersolutions. 3.2AdaptiveInertiaWeight AnadaptiveinertiaweightisintroducedtobalancetheexplorationandexploitationcapabilitiesofthePSOalgorithmdynamically.Thisadaptivemechanismadjuststheinertiaweightbasedontheevolutionofth