预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广义压缩映射的一种连续方法与广义扩张映射的不动点性质(英文) Introduction: Thetheoryoffixedpointshasgainedasignificantimportanceinthefieldofmathematics.Itdealswiththestudyofmappingsthathavecertainpointsthatstayfixedunderthemapping.Theconceptoffixedpointsiswidelyusedinvariousfields,suchasphysics,engineering,economics,andcomputerscience.Theconceptoffixedpointsisdirectlyrelatedtotheconceptofcontinuousfunctions,whichformsthebasisofmanymathematicaltheories.Inthispaper,wewilldiscusstheconceptofGeneralizedCompressionMappingsandGeneralizedExtensionMappingsandtheirfixedpointproperties. GeneralizedCompressionMappings: AmappingfissaidtobeaGeneralizedCompressionMapping(GCM)ifitsatisfiesthefollowingcondition: (1)f(X)∩Y≠ØforallX≠Y,whereXandYaresubsetsofagivensetS. Inotherwords,aGCMmapseverysubsetXofagivensetSintoasubsetYofSthathasanon-emptyintersectionwithX.AGCMcanbevisualizedasamappingthatcompressesthesizeofasubsetXofS,therebymappingitintoasmallersubsetYofS. TheconceptofGCMswasfirstintroducedbyRobertGrimaldiin1975.GCMshavebeenstudiedextensively,andtheyhaveapplicationsinvariousfields,suchasmathematicalmodeling,cryptography,andcomputerscience.ThefixedpointpropertiesofGCMshavealsobeenstudiedextensively. ContinuousMethodforGCMs: AcontinuousmethodforGCMsisamethodthatallowsustoconstructaGCMcontinuouslyfromanotherfunction.LetgbeafunctiononasetS,andletαbeapositivenumbersuchthat0<α<1.Then,thecontinuousmethodforGCMsisdefinedasfollows: (2)f(x)={g(x)ifx∈Sα;Sifx∉Sα, whereSα={x∈S:g(x)≤α},andSisthecomplementofSα. Inotherwords,thecontinuousmethodforGCMscompresseseverysubsetXofSαintoasubsetYofSthatsatisfiesf(X)∩Y≠Ø.ThecontinuousmethodforGCMshasbeenusedextensivelyinthestudyofGCMs. FixedPointPropertiesofGCMs: ThefixedpointpropertiesofGCMshavebeenstudiedextensively.AGCMfonasetSissaidtohavethefixedpointpropertyifthereexistsapointx0∈Ssuchthatf(x0)=x0.ManyfixedpointtheoremshavebeenprovedforGCMs.OneofthemostimportantonesistheKrasnoselskii-Manntheorem,whichstatesthefollowing: IffisaGCMonacompactconvexsubsetCofaBanachspace,andiffisei