预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于稀疏表示的医学图像融合 Title:SparseRepresentation-basedFusionofMedicalImages Abstract: Medicalimagefusionplaysacrucialroleinvariousclinicalapplications,includingdiagnosis,treatmentplanning,andsurgicalinterventions.Theaimofimagefusionistoenhancethecomplementaryinformationfrommultiplemedicalimages,leadingtobetterdecision-making.Thispaperproposesanovelapproachformedicalimagefusionbasedonsparserepresentation.Themethodexploitstheinherentsparsityofmedicalimagestoaccuratelyfusetheinformationfromdifferentmodalities,therebyimprovingtheoverallimagequalityandclinicalutility.Experimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedapproachcomparedtotraditionalfusionmethods. 1.Introduction(150words) Medicalimagingisarapidlyevolvingfieldthatprovidesimportantinsightsintothediagnosisandtreatmentofvariousdiseases.Imagingmodalitiessuchascomputedtomography(CT),magneticresonanceimaging(MRI),ultrasound,andpositronemissiontomography(PET)offerdifferentperspectivesofanatomicalandphysiologicalinformation.However,eachmodalityhasitslimitationsandcannotprovideacompletepicture.Therefore,thefusionofmultiplemodalitieshasthepotentialtoprovidemoreaccurateandcomprehensiveinformationformedicalpractitioners.Inthispaper,weproposeanovelapproachformedicalimagefusionbasedonsparserepresentation.Sparserepresentationtheoryhasshownpromisingresultsinvariousimageprocessingtasksbycapturingtheunderlyingsparsestructureofsignals.Byexploitingthesparsityofmedicalimages,ourproposedfusionmethodaimstoimprovethevisibilityanddiagnosticperformanceinclinicalapplications. 2.RelatedWork(250words) Asignificantamountofresearchhasbeenconductedinthefieldofmedicalimagefusion,andvarioustechniqueshavebeenproposed.Traditionalfusionmethodsincludepixel-levelmethodssuchasaveraging,weightedaveraging,andintensitymodulation,andfeature-levelmethodssuchaswavelettransform,discretecosinetransform,andprincipalcomponentanalysis.However,thesemethodsoftensufferfrominformationloss,redundancy,andlossoffinedetails,impactingtheclinicalapplicabi