预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进的空间直方图相似性度量的粒子滤波视觉跟踪(英文) Introduction: Visualtrackingreferstotheprocessofcontinuouslyestimatingthelocationofatargetinanimageorvideosequenceovertime.Ithasextensiveapplicationsincomputervision,includingsurveillance,autonomoussystems,andobjectrecognition.However,visualtrackingisachallengingtaskduetothevariabilityofobjectsinappearance,illumination,occlusion,andmotion.Toovercomethesechallenges,manyalgorithmshavebeenproposedbasedonvarioustechniques,suchastemplatematching,feature-basedmethods,anddeeplearning. Amongthesealgorithms,theparticlefilterisapopularapproachforvisualtrackingduetoitsabilitytohandlenon-linearandnon-Gaussiandistributions.However,theperformanceofparticlefilter-basedvisualtrackingstronglydependsonthesimilaritymeasurebetweenthetargetandtemplate.Therearevarioussimilaritymeasuresusedinparticlefiltertracking,includingcorrelation-basedmethods,histogram-basedmethods,andkernel-basedmethods. Inthispaper,weproposeanimprovedhistogram-basedsimilaritymeasureforparticlefiltervisualtracking.Theproposedmethodenhancesthestandardhistogram-basedsimilaritymeasurebyincorporatingspatialinformationandadaptivebinningtechniques.Theperformanceoftheproposedmethodisevaluatedandcomparedwithstate-of-the-artmethodsonseveralbenchmarkdatasets,demonstratingitseffectivenessinimprovingtheaccuracyandrobustnessofparticlefiltervisualtracking. RelatedWork: Histogram-basedmethodshavebeenusedwidelyinparticlefiltertrackingduetotheirsimplicityandefficiency.Thestandardhistogramsimilaritymeasurecalculatesthedistancebetweenthehistogramofthetargetandtemplatewithoutconsideringspatialinformation.Thisapproachcanbeeffectiveincaseswheretheobjecthasadistinctivecolorortextureandisnotsubjecttochangesinilluminationorpose.However,inmorechallengingscenarios,wheretheobjectundergoessignificantvariationsinappearanceorissubjecttosevereocclusions,thestandardhistogram-basedmethodmayfail. Toimprovetherobustnessofhistogram-basedmethods,researchershaveproposedseveralmodifications.Oneapproachistousecolorhistogramsind