预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于经验模态分解、多尺度熵算法和支持向量机的滚动轴承故障诊断方法 Title:FaultDiagnosisMethodforRollingBearingBasedonEmpiricalModeDecomposition,MultiscaleEntropyAlgorithm,andSupportVectorMachine Abstract: Rollingbearingsarewidelyusedinvariousindustrialmachinery,andtheirfaultscanleadtoseriousconsequences.Inthispaper,weproposeafaultdiagnosismethodforrollingbearingsbasedonEmpiricalModeDecomposition(EMD),MultiscaleEntropyAlgorithm(MEA),andSupportVectorMachine(SVM).Theproposedmethodaimstoaccuratelyidentifythefaulttypesandseveritylevelsofrollingbearingstofacilitatetimelymaintenanceandimproveequipmentreliability. 1.Introduction Rollingbearingsplayacrucialroleinrotatingmachinerybysupportingradialandaxialloads.However,undervariousoperatingconditions,theyarepronetodifferenttypesoffaults,suchaspitting,wear,crack,andlooseness,whichcanresultinperformancedegradationorevencatastrophicfailures.Therefore,itisessentialtodevelopeffectivefaultdiagnosismethodstoensurethesafeandreliableoperationofmachinery.Inthisresearch,weproposeacompositeapproachcombiningEMD,MEA,andSVMtoenhancetheaccuracyofrollingbearingfaultdiagnosis. 2.EmpiricalModeDecomposition(EMD) EMDisapowerfulsignalprocessingtechniquethatdecomposesanon-stationarysignalintoIntrinsicModeFunctions(IMFs).EachIMFrepresentsaspecificfrequencycomponentoftheoriginalsignalandprovidesvaluableinformationabouttheunderlyingphysicalprocesses.BydecomposingthebearingvibrationsignalsusingEMD,thefault-relatedinformationcanbeeffectivelyextractedfromtherawdata. 3.MultiscaleEntropyAlgorithm(MEA) MEAisamethodusedforquantifyingthecomplexityorirregularityofatimeseries.Itmeasurestheamountofinformationatdifferentscalesandcanrevealchangesinthesignaldynamicsrelatedtodifferentfaultconditions.BycalculatingtheentropyofthedecomposedIMFsatdifferentscales,thefaultfeaturescanbeextractedtodistinguishdifferentfaulttypes. 4.SupportVectorMachine(SVM) SVMisapopularmachinelearningalgorithmthathasbeensuccessfullyappliedinvariousfaultdiagnosisapplications.Itcaneffectivelyclassifydatabyconstructinganoptima