预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于递归量化分析的COA-SVR短期风速混合预测模型 摘要 在风电发电厂中,风速是影响电力输出的主要因素之一。因此,精确预测风速变化对于最大化风力发电厂的效益至关重要。本文基于递归量化分析,结合支持向量机回归模型,提出了一种COA-SVR短期风速混合预测模型。该模型采用COA算法优化支持向量机回归模型的参数,实验结果表明,该模型的预测准确率要高于传统的SVR模型,且具有较好的鲁棒性和泛化能力。 关键词:递归量化分析,支持向量机回归,COA算法,短期风速预测 Abstract Inwindpowergenerationplants,windspeedisoneofthemainfactorsthataffectsthepoweroutput.Therefore,accuratepredictionofwindspeedchangesiscrucialformaximizingtheefficiencyofwindpowergenerationplants.Inthispaper,basedonrecursivequantizationanalysis,combinedwithsupportvectormachineregressionmodel,aCOA-SVRshort-termwindspeedhybridpredictionmodelisproposed.ThemodeloptimizestheparametersofsupportvectormachineregressionmodelbyCOAalgorithm.ExperimentalresultsshowthatthepredictionaccuracyofthemodelishigherthanthatofthetraditionalSVRmodel,andithasgoodrobustnessandgeneralizationability. Keywords:RecursiveQuantizationAnalysis,SupportVectorMachineRegression,COAAlgorithm,Short-termWindSpeedPrediction 1.Introduction Windpowerisapromisingcleanenergysource,andthedevelopmentofwindpowergenerationtechnologyhasreceivedincreasingattention.Inrecentyears,withthecontinuousdevelopmentofwindpowertechnology,windpowergenerationcapacityhasgraduallyincreased,andwindpowerhasbecomeoneofthemostimportantrenewableenergysources.Windspeedisakeyfactorinwindpowergeneration,andaccuratewindspeedforecastingisessentialformaximizingtheefficiencyofwindpowerplants. Windspeedforecastingisacomplexandchallengingtaskduetothevariabilityandrandomnessofwindspeed.Traditionalstatisticalmethodsandartificialneuralnetwork-basedmethodshavebeenwidelyusedinwindspeedforecasting.However,thesemethodshavesomedisadvantagessuchaslowaccuracyandpoorgeneralizationability. Inrecentyears,supportvectormachines(SVMs)havebeenwidelyusedinwindspeedforecastingduetotheirstronggeneralizationability.However,theparametersofSVMsneedtobeoptimizedbysomeoptimizationalgorithmstoensuretheiroptimalperformance. Inthispaper,aCOA-SVRshort-termwindspeedhybridpredictionmodelisproposedbasedonrecursivequantizationanalysisandsuppor