预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于遗传模拟退火算法的滑坡位移预测方法(英文) Title:AGeneticSimulatedAnnealing-basedApproachforLandslideDisplacementPrediction Abstract: Landslidesposeasignificantthreattoinfrastructureandhumanlives,necessitatingeffectivelandslidedisplacementpredictionmethods.ThispaperproposesanovelapproachbasedonthecombinationofGeneticAlgorithm(GA)andSimulatedAnnealing(SA)topredictlandslidedisplacement.TheGeneticSimulatedAnnealing(GSA)algorithmoptimizestheparametersusedinthepredictionmodel,resultinginimprovedaccuracyandreliabilityoflandslidedisplacementforecasts.Inthispaper,weoutlinetheframeworkoftheGSAapproachandpresentexperimentalresultsdemonstratingitseffectivenessonreal-worldlandslidedatasets. 1.Introduction: Landslidesarenaturalhazardsthatcancauseseveredamagetoproperty,infrastructure,andlossoflife.Accuratepredictionoflandslidedisplacementcanhelpmitigatetheserisksbyenablingearlywarningsystemsandinformeddecision-making.Traditionallandslidedisplacementpredictionmethodshavelimitationsintermsofaccuracyandreliability.Thispaperpresentsanovelapproach,usingGSA,toimprovetheaccuracyoflandslidedisplacementpredictions. 2.Background: 2.1LandslideDisplacementPrediction: Landslidedisplacementpredictioninvolvesestimatingthemovementofsoilmassesduringalandslideevent.Variousfactorscontributetolandslidedisplacement,includinggeologicalandgeotechnicalproperties,rainfallpatterns,andslopegeometry.Traditionalpredictionmethodstypicallyrelyonstatisticalregressiontechniquesorothersimplisticmodelsthatoftenfailtocapturethecomplexinteractionsbetweenthesefactors. 2.2GeneticAlgorithm: GeneticAlgorithmisapopulation-basedoptimizationtechniqueinspiredbytheprinciplesofnaturalevolution.Itmimicstheprocessofnaturalselection,iteration,andreproductiontofindgoodsolutionsinalargesearchspace.GeneticAlgorithmhasbeensuccessfullyappliedtosolvevariousoptimizationproblemsandhasshownpromiseinlandslideprediction. 2.3SimulatedAnnealing: SimulatedAnnealingisametaheuristicoptimizationalgorithminspiredbytheannealingprocessinmetallurgy.Itrandomlyexplorest