预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于深度栈式自编码网络的面部年龄识别 Title:FacialAgeRecognitionbasedonDeepStackedAutoencoderNetwork Abstract: Facialagerecognitionisanimportantresearchareawithawiderangeofapplications,suchasageestimation,ageprogression/regression,andbiometricauthentication.Traditionalagerecognitionmethodsoftenrelyonhandcraftedfeatures,whicharesensitivetovariationsinlightingconditions,viewpoints,andfacialexpressions.Toaddresstheselimitations,thispaperproposesafacialagerecognitionmethodbasedondeepstackedautoencodernetwork(DSAN). 1.Introduction Facialagerecognitionhasattractedsignificantattentionduetoitsnumerouspracticalapplicationsinvariousfields,includingsocialmediaanalysis,securitysystems,andhealthcare.Theabilitytoaccuratelyestimatetheageofanindividualfromafacialimagecanprovidevaluableinformationforpersonalizedservicesanddemographicanalysis.However,ageestimationfromfacialimagesisachallengingtaskduetothecomplexvariationsinfacialappearancecausedbyfactorssuchasaging,lighting,pose,andexpressionchanges. 2.RelatedWork Previousstudiesonfacialagerecognitionhaveprimarilyfocusedonfeatureextractiontechniquesandageestimationalgorithms.TraditionalmethodsoftenutilizehandcraftedfeaturessuchasLocalBinaryPatterns(LBP),Scale-InvariantFeatureTransform(SIFT),andHistogramofOrientedGradients(HOG).However,thesemethodsarelimitedbytheirdependenceonmanualfeatureengineeringandtheirinabilitytocapturehigh-levelsemanticinformation. 3.DeepStackedAutoencoderNetwork(DSAN) Theproposedfacialagerecognitionmethodutilizesdeepstackedautoencodernetwork(DSAN)forageestimationfromfacialimages.DSANisatypeofunsupervisedneuralnetworkarchitecturethatcanlearnhierarchicalrepresentationsofdatathroughmultiplelayersofautoencoders.Autoencodersareneuralnetworksthataimtoreconstructtheirinputdataattheoutputlayer,whichforcesthenetworktolearnuseful,compactrepresentationsoftheinputdata. 4.ArchitectureofDSAN TheDSANarchitectureconsistsofmultiplelayersofencoderanddecoderpairs,formingadeepneuralnetwork.Eachencoderlearnsahierarchicalrepresentationoftheinputdataa