预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题32:阅读理解题专题任何一个数学问题的求解,其第一个环节就是读题审题。数学题的呈现方式多种多样,阅读的内容也丰富多彩,阅读理解题从题型上看,有展示全貌,留空补缺的、有要求说明解题理由的、有要求寻找解题错误的、有要求归纳规律,再解决问题的、有要求总结解题方法,再类比解题的、有思路点拨,再解题的、有理解新概念,再解决问题的等,这类不少源于课本,又高于课本,一般难度不大,但构思独特,寓意深刻的考题是近几年中考考察的热点。 这类题型特点是:内容丰富,题样多变,紧扣学生的认知区域的边缘,但属于面宽层深的知识,有较强的综合性、技巧性。阅读理解题是以能力立意为着力点,它不但考查了学生的阅读理解能力、观察分析能力、归纳类比能力、抽象概括能力、数据处理能力、数学语言表达能力、知识的快速构建能力,而且还考查了学生灵活创造地运用新知识的能力。学会读书、学会理解、学会分析、学会应用、学会总结,从而学会求知,阅读理解题考察的潜在功能就在于此.A.(2,-3) B.(-2,3) C.(2,3) D.(-2,-3)例2:(2013安徽)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”,如图1,四边形ABCD即为“准等腰梯形”,其中∠B=∠C. (1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C,E为边BC上一点,若AB∥DE,AE∥DC,求证:(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD=∠ADC的平分线交于点E,若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情形又将如何?写出你的结论.(不必说明理由)例3:(2013湖南永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2·i=-i,i4=i2·i2=1.从而对任意正整数n,我们可得i4n+1=i4n·i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1,那么i+i2+i3+i4+…+i2012+i2013的值为() A.0B.1C.-1D.i解答下列问题: 如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C. (1)求A、B两点的坐标及C点的坐标; (2)连结AC、BC,求证△ABC为直角三角形; (3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.