基于组合模型的电力预测方法.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于组合模型的电力预测方法.docx
基于组合模型的电力预测方法基于组合模型的电力预测方法摘要:在电力系统中,准确预测电力负荷是实现合理调度和优化能源资源利用的关键。传统的电力负荷预测方法存在精度不高和实时性差的问题。为了解决这些问题,本文提出了一种基于组合模型的电力预测方法。该方法通过将不同预测模型进行组合,提高预测精度和实时性。实验结果表明该方法在电力负荷预测中具有很好的效果。关键词:电力负荷预测,组合模型,预测精度,实时性1.引言电力负荷预测是电力系统调度和能源规划的基础。准确预测电力负荷可以帮助电力公司合理调度发电机组,并优化能源资源
基于VAR和GM组合模型的电力消费预测.pdf
基于Stacking与Prophet组合模型的短期电力负荷预测.docx
基于Stacking与Prophet组合模型的短期电力负荷预测基于Stacking与Prophet组合模型的短期电力负荷预测摘要:电力负荷预测是电力系统调度和运营中的关键问题,准确的负荷预测对于实现电力供需平衡、提高电力系统运行效率具有重要意义。本文结合Stacking集成学习和Prophet时间序列预测模型,提出了一种有效的短期电力负荷预测方法。实验结果表明,该方法在短期电力负荷预测中具有较高的准确性和稳定性。关键词:电力负荷预测;Stacking;Prophet;集成学习;时间序列1.引言随着电力系统
基于组合预测模型的股票预测方法的研究.pdf
第29卷第2期青岛理工大学学报Vo1.29No.22008JournalofQingdaoTechnologicalUniversity基于组合预测模型的股票预测方法的研究李春兴,白建东(青岛理工大学中德信息技术研究所,青岛266033)摘要:对股票预测问题进行了深入的研究,提出了一个新的预测方法.针对股票时间序列的高度非线性、高噪音的特点,采用小波变换方法有效的过滤噪音、约简数据,并对ARIMA模型和BP神经网络预测模型进行了研究和分析,提出了一个基于ARIMA模型和BP神经网络模型的模糊变权重组合预测
基于组合模型的极端降水预测方法.docx
基于组合模型的极端降水预测方法基于组合模型的极端降水预测方法摘要:极端降水事件对生态环境和人类社会造成了严重威胁,因此准确预测极端降水事件对于减少损失具有重要意义。本文提出了一种基于组合模型的极端降水预测方法,通过将多个不同模型的结果进行融合,提高了预测的准确性。实验结果表明,该方法在极端降水预测方面具有显著的优势。1.引言极端降水事件是指降水量大于一定阈值的降水事件,其具有短时强降水、高强度降水和大范围降水等特点。极端降水事件不仅会导致洪涝灾害、滑坡等自然灾害,还会对农作物生长和城市交通等方面产生严重影