预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于区间数距离的IGOWLA算子的区间型组合预测模型 Abstract Theinterval-typecombinationpredictionmodelbasedonintervalnumberdistanceIGOWLAoperatorisproposedinthispaper.Thismodelisaimedatsolvingtheuncertaintyandvaguenessproblemsinthecombinationpredictionofintervalvariables.Basedontheintervalnumberdistance,theIGOWLAoperatorisintroducedtocalculatetheweightofeachinputintervalvariable.Then,theweightedaveragingoperatorisusedtocombinetheintervalvariablesandobtainthefinaloutputintervalprediction.Theeffectivenessandsuperiorityoftheproposedmodelaredemonstratedthroughnumericalexamplesandcomparisonwithotherpredictionmodels. Keywords:interval-typecombinationprediction;intervalnumberdistance;IGOWLAoperator;weightedaveragingoperator Introduction Theintervalvariablehasbeenwidelyusedinvariousfieldsduetoitsabilitytoexpressuncertaintyandvagueness.Interval-valueddataprovidemoreinformationthanasinglepointvalue,andcaneffectivelydealwiththeincomplete,imprecise,andindeterminateinformationinreal-worldproblems.However,thecombinationpredictionofintervalvariablesisstillachallengingissueduetothecomplexityoftheintervaldata.Traditionalpredictionmodels,suchasregressionanalysisandtimeseriesanalysis,arenotsuitableforintervaldataanalysisandpredictionduetotheirunderlyingassumptions. Inrecentyears,manyresearchershaveproposedvariousintervalpredictionmodelsbasedonfuzzylogic,neuralnetworks,andgreysystems.Thesemodelscandealwithintervaldatatosomeextent,buttheystillfacesomechallengesinpredictingtheintervalvariablesaccuratelyandrobustly.Oneofthemainchallengesistheselectionofappropriateoperatorstocombinetheinputvariablesintoafinalprediction.Mostoftheexistingcombinationoperatorsarebasedonmathematicalmodels,andtheycannotaccuratelyreflecttheweightoftheinputvariablesinthecombinationprocess. Toovercomethischallenge,thispaperproposesaninterval-typecombinationpredictionmodelbasedonintervalnumberdistanceIGOWLAoperator.TheIGOWLAoperatorisintroducedtocalculatetheweightofeachinputintervalvariablebasedonthedistancebetweentheintervalnumbers.Then,t