

基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测.docx
基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测摘要:短期风速预测在能源领域中具有重要的应用价值。为了提高短期风速预测的准确性和稳定性,本文提出了一种基于变分模态分解(VMD)和蝙蝠算法(BA)-相关向量机(RVM)的短期风速区间预测方法。该方法以历史风速数据作为输入,通过VMD对风速数据进行模态分解,得到多个不同频率的振动模态。然后使用BA-RVM训练模型,并通过交叉验证法选择最优模型。最后,利用训练好的模型对未来一段时间内的风速进行预测,
基于变分模态分解和LSSVM的风电场短期风速预测.docx
基于变分模态分解和LSSVM的风电场短期风速预测标题:基于变分模态分解和LSSVM的风电场短期风速预测引言:风能作为一种可再生能源在世界范围内受到了广泛关注。风电场的效率和稳定性对于风能的利用至关重要。因此,准确预测风电场的短期风速对于风电发电量的调度和电网的稳定性具有重要意义。本论文提出了一种基于变分模态分解(VMD)和LeastSquareSupportVectorMachine(LSSVM)的风电场短期风速预测方法。通过对风速信号进行变分模态分解,将非平稳信号分解为多个固有模态函数(IMF)。然后,
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究.docx
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究摘要:随着可再生能源的快速发展,风力发电被广泛应用于电力系统中。然而,风速预测的准确性对风力发电系统的运行和调度至关重要。本文提出了一种基于集合经验模态分解(CEEMD)和套索算法的短期风速组合变权预测模型。首先,利用CEEMD将原始风速序列分解为一系列本征模态函数(IMF)。然后,使用套索算法进行特征选择,从而筛选出对风速预测具有重要影响的IMF。接下来,根据IMF的重要性,使用线性组
基于变分模态分解与双向长短期记忆神经网络的超短期风速预测.pptx
汇报人:CONTENTS添加章节标题变分模态分解与双向长短期记忆神经网络概述变分模态分解原理双向长短期记忆神经网络原理变分模态分解与双向长短期记忆神经网络结合的原理超短期风速预测模型构建数据预处理特征提取模型训练与优化预测结果评估模型应用与效果分析模型在风力发电领域的应用预测效果对比分析模型优缺点分析改进方向与策略结论与展望研究结论总结未来研究方向展望汇报人:
基于变分模态分解和改进鲸鱼算法优化的神经网络风速预测模型.docx
基于变分模态分解和改进鲸鱼算法优化的神经网络风速预测模型基于变分模态分解和改进鲸鱼算法优化的神经网络风速预测模型摘要:风速预测在能源、航空、气象等领域具有重要的应用价值。为了提高风速预测的准确性和稳定性,本文将变分模态分解(VMD)与改进的鲸鱼算法(IWO)相结合,提出了一种新的神经网络风速预测模型。首先,利用VMD对原始风速数据进行模态分解,提取出多个子信号系列;然后,将每个子信号系列作为输入,构建相应的神经网络模型;接下来,通过改进的IWO算法来优化神经网络模型的参数;最后,利用优化后的神经网络模型对