预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于TDOA的无线定位算法改进 Title:EnhancementofTDOA-basedWirelessLocalizationAlgorithm Abstract: Wirelesslocalizationplaysacrucialroleinvariousapplicationssuchasassettracking,emergencyresponse,andindoorpositioningsystems.TimeDifferenceofArrival(TDOA)isawidelyusedtechniqueforwirelesslocalizationthatreliesonthedifferencesinarrivaltimesofsignalsfromdifferenttransmitterstoestimatethepositionofatarget.ThispaperaimstoenhancetheaccuracyandrobustnessofTDOA-basedwirelesslocalizationalgorithmsbyproposingseveralkeyimprovements. 1.Introduction Wirelesslocalizationalgorithmsareessentialforaccuratelydeterminingthelocationofmobiledevicesorobjectsinawirelesscommunicationnetwork.TDOA-basedalgorithmsutilizethetimedifferencesofarrivalofsignalstoestimatethepositionofatarget.However,thesealgorithmsmaysufferfromerrorsduetovariousfactors,includingmultipathpropagation,non-line-of-sightconditions,andmeasurementnoise.ThispaperaddressestheseissuesandproposesenhancementstoTDOA-basedlocalizationalgorithms. 2.RelatedWork ThissectionprovidesabriefoverviewofexistingTDOA-basedlocalizationalgorithmsandhighlightstheirlimitations.SomepopulartechniquesincludetheMaximumLikelihoodEstimation(MLE),polynomial-basedlocalization,andtrilaterationmethods.However,thesemethodsoftenstrugglewithaccuratepositionestimationwhenfacedwithreal-worldchallengessuchasnoisymeasurementsandunknownparameters. 3.ProposedEnhancements ThissectionpresentstheenhancementsproposedtoimproveTDOA-basedwirelesslocalizationalgorithms: 3.1RobustEstimationTechniques TraditionalTDOAalgorithmsoftenassumethatmeasurementsarecharacterizedbyGaussiannoise,whichisnotalwaysvalidinreal-worldscenarios.Byapplyingrobustestimationtechniques,suchasRANSAC(RandomSampleConsensus)orM-Estimators,outlierscanbeeffectivelydetectedandmitigated,resultinginimprovedlocalizationaccuracy. 3.2AdaptiveFilteringandSignalProcessing Tomitigatetheeffectsofmultipathpropagationandnon-line-of-sightconditions,adaptivefilteringtechniquescanbeincorporated.MethodssuchasKalmanfilteringorparticle