预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于Spark的交通流预测方法 Title:TrafficFlowPredictionMethodsBasedonSpark Abstract: Trafficflowpredictionplaysacriticalroleintransportationmanagementandintelligenttransportationsystems.Accuratetrafficflowpredictionallowsforefficienttrafficplanning,routeoptimization,andcongestionmanagement.Withtheadvancementsinbigdatatechnologies,theuseofSparkasatoolfortrafficflowpredictionhasgainedsignificantattention.ThispaperprovidesanoverviewoftheexistingtrafficflowpredictionmethodsbasedonSparkandexplorestheiradvantages,limitations,andfutureresearchdirections. 1.Introduction Theincreasingcongestioninurbanareasposessignificantchallengesfortransportationmanagement.Trafficflowpredictionisessentialforeffectivetrafficmanagement,asitenablesproactivemeasurestobetakentoalleviatecongestionandimprovetransportationefficiency.Traditionaltrafficflowpredictionmethodsrelyonhistoricaldataandstatisticalmodels.However,thesemethodsoftenfailtocapturethedynamicnatureoftrafficpatterns.Inrecentyears,withtheproliferationofbigdatatechnologies,therehasbeenashifttowardsusingSparkfortrafficflowpredictionduetoitsabilitytoprocesslarge-scaledatasetsinadistributedcomputingenvironment. 2.Spark-basedTrafficFlowPredictionMethods 2.1DataPreprocessing Beforeapplyingpredictionmodels,datapreprocessingisnecessarytocleanandtransformrawtrafficdataintoasuitableformatforanalysis.Sparkprovidesvariousdataprocessingfunctionsthatcanhandletaskssuchasdatacleaning,filtering,andaggregation. 2.2FeatureExtraction Featureextractionisanessentialstepintrafficflowpredictionasithelpsidentifyrelevantpatternsandcharacteristicsfromthedata.Spark'smachinelearninglibrary(MLlib)offersefficientmethodsforfeatureextraction,includingstatisticalanalysis,clusteringalgorithms,anddimensionalityreductiontechniques. 2.3PredictionModels Oncethefeaturesareextracted,variouspredictionmodelscanbeappliedusingSpark'sMLlib.Thesemodelsincluderegressionmodels,timeseriesanalysis,deeplearningmodels,andensemblemethods.ThesemodelsleveragethedistributedcomputingcapabilitiesofSpar