预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于BP、RBF神经网络的含蜡原油蜡沉积预测 Title:PredictingWaxDepositioninParaffin-ContainingCrudeOilBasedonBPandRBFNeuralNetworks Abstract: Paraffindepositionincrudeoilpipelinesisasignificantchallengeintheoilindustry,leadingtodecreasedflowrates,increasedmaintenancecosts,andpotentialpipelineblockages.Accuratelypredictingthewaxdepositionprocesscanhelpoptimizepreventivemeasuresandreducetheeconomicandoperationalimpact.Inthispaper,twoneuralnetworkmodels,namelyBackpropagation(BP)andRadialBasisFunction(RBF),areutilizedforpredictingwaxdepositioninparaffin-containingcrudeoil.Theobjectiveistodeveloprobustmodelsthateffectivelycapturethecomplexrelationshipbetweenvariousprocessparametersandwaxdepositionbehavior. 1.Introduction: 1.1Background 1.2SignificanceandMotivation 1.3ResearchObjectives 2.LiteratureReview: 2.1WaxDepositioninCrudeOilPipelines 2.2PredictiveMethodsUsedinWaxDepositionStudies 2.3NeuralNetworksinPredictiveModeling 3.Methodology: 3.1DataCollectionandPreprocessing 3.2BackpropagationNeuralNetwork(BPNN) 3.3RadialBasisFunctionNeuralNetwork(RBFNN) 3.4ModelTrainingandValidation 3.5PerformanceEvaluationMetrics 4.ResultsandDiscussion: 4.1DatasetDescription 4.2BPNNModelResultsandAnalysis 4.3RBFNNModelResultsandAnalysis 4.4ModelComparisonandSelection 4.5SensitivityAnalysis 5.Conclusion: 5.1SummaryofFindings 5.2ContributionsandImplications 5.3RecommendationsforFutureResearch 1.Introduction: 1.1Background: Waxdepositionisacommonphenomenonthatoccurswhencrudeoiltemperaturesdropbelowthewaxappearancetemperature(WAT).Paraffinwax,presentincrudeoil,solidifiesandcoatstheinnersurfacesofpipelines.Thisleadstoflowrestrictionsand,ultimately,pipelinefailureifnotproperlymanaged.Consequently,predictingwaxdepositionplaysacrucialroleinoptimizingflowassurancestrategiesintheoilindustry. 1.2SignificanceandMotivation: Accuratepredictionofwaxdepositioncanhelpindevelopingpreventivemeasuresandoptimizingoperationalandmaintenanceactivities.Traditionalpredictionmethodsoftenrelyonempiricalcorrelationsthathavelimitedaccurac