预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

响应变量右删失时参数分位数回归模型的模型检验 Title:ModelTestingforQuantileRegressionwhentheResponseVariableisRight-Censored Abstract: Quantileregressionisapowerfultoolforanalyzingtherelationshipbetweencovariatesandconditionalquantilesoftheresponsevariable.However,insomecases,theresponsevariablemaybesubjecttorightcensoring,wherethevaluesexceedingacertainthresholdaretruncatedorunknown.Thispaperfocusesonmodeltestinginthecontextofquantileregressionwhentheresponsevariableisright-censored.Wediscussthechallengesposedbycensoringandproposeaframeworkforconductingmodeltestsinsuchscenarios.Specifically,weexplorevarioustestsbasedondiagnosticmeasures,simulateddata,andresamplingtechniques.TheperformanceofthesetestsisevaluatedthroughMonteCarlosimulations,andacasestudyispresentedtoillustratetheirapplicationonrealdata. 1.Introduction Quantileregressionextendstraditionallinearregressionbyestimatingtheconditionalquantilesoftheresponsevariableratherthantheconditionalmean.Thisapproachprovidesamorecomprehensiveunderstandingoftherelationshipbetweenthecovariatesanddifferentquantilesoftheresponsevariable,allowingformorenuancedanalysis.However,inscenarioswheretheresponsevariableissubjecttorightcensoring,theusualtechniquesforquantileregressionarenolongerdirectlyapplicable.Rightcensoringoccurswhentheresponsevaluesareknowntobeaboveacertainthresholdbutareotherwiseunobserved.Insuchcases,theestimationandinterpretationofquantileregressionmodelsrequirespecialconsideration. 2.ChallengesinQuantileRegressionwithRightCensoring Toaddressthechallengesposedbyrightcensoringinquantileregression,variousapproacheshavebeenproposedintheliterature.Onecommonapproachinvolvesimputingthecensoredobservationsusingsurvivalanalysistechniques,allowingformoreaccurateestimationofthequantiles.However,thisintroducesadditionaluncertaintyintheanalysisandrequirespropervalidationoftheimputationmethods.Anotherapproachistouseinverseprobabilityweightingtoadjustthequantileestimatesbasedontheproportionofcensoredobservations.Thismethodaccountsforcensoringexp