预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

关于数论函数方程S(SL(n~2))=φ_2(n)解的讨论 Abstract: Inthispaper,wediscussthesolutiontothenumbertheoryfunctionequationS(SL(n~2))=φ_2(n).Weusebasicnumbertheoryconceptsandtechniquestoderiveasolutionandprovideexamplestoillustrateourfindings. Introduction: Mathematicianshavelongbeenfascinatedbynumbertheoryfunctionsandequations.OnesuchequationisS(SL(n~2))=φ_2(n),whereSandφ_2arenumbertheoryfunctionsandSListhespeciallineargroup.Inthispaper,wewilldiscussthisequationandprovideasolution. Solution: First,let'sdefinethefunctionsSandφ_2.ThefunctionS(n)isthesumofthedivisorsofnandisdenotedbyσ(n).Thefunctionφ_2(n)isthenumberofpositiveintegerslessthanorequaltonthatarerelativelyprimeton,i.e.,theEulertotientfunction. Next,let'sconsiderthespeciallineargroupSL(n).Thisisthesetofn×nmatriceswithdeterminant1,overaparticularfield(inthiscase,wewillconsidertherealnumbers).WecandefinethefunctionSL(n~2)asthesetofelementsofSL(n)withentriesin{(1,0),(0,1),(-1,0),(0,-1)}. Now,considerthefunctionS(SL(n~2)).WeneedtofindthesumofthedivisorsoftheelementsofSL(n~2).Sincetheentriesofthematricesareallintegers,thedivisorsofeachelementarealsointegers.Therefore,wecanexpandS(SL(n~2))asthesumofthedivisorsofeachentryoftheelementsofSL(n~2).Let'sdenotetheentriesofthematricesbya_ij(i,j=1,2,...,n).Then,wehave: S(SL(n~2))=∑_a_ij∈SL(n~2)σ(a_ij) Sincetheentriesofthematricesarelimitedto{(1,0),(0,1),(-1,0),(0,-1)},wecansimplifythisequationfurther.Notethattheset{(1,0),(0,1)}correspondstotheidentitymatrix,whichhasadeterminantof1.Theset{(-1,0),(0,-1)}correspondstothematriceswithdeterminant-1.Therefore,wecandividethesummationintotwocases:theidentitymatricesandthematriceswithdeterminant-1. Fortheidentitymatrices,wehave: S(SL(n~2))=σ(1)^n=1^n=1 Forthematriceswithdeterminant-1,wecanwrite: S(SL(n~2))=∑_a_ij∈SL(n~2)σ(a_ij)=∑_d|nσ(d)∑_a_ij∈SL(n~2),a_ij≡d(mod2)1 wherethenumeratoristhesumofthedivisorsofnandthedenominatoristhenumberofelementsofSL(n~2)withdeterminant-1thathavea_ij≡d(mod2).Thismayseemlikeadifficultexpressiontoevaluate,butwecansimplif