预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

上证50指数波动及预测的实证研究--基于SVM模型和HAR族模型 Title:EmpiricalStudyonVolatilityandForecastingoftheShanghai50Index-BasedonSVMModelandHARFamilyModels Abstract: ThisresearchaimstoinvestigatethevolatilityandforecastingoftheShanghai50IndexusingSupportVectorMachine(SVM)modelandtheHAR(HeterogeneousAutoregressive)familymodels.TheShanghai50Indexischosenasitrepresentstheperformanceofthetop50companieslistedontheShanghaiStockExchange.ThestudyutilizeshistoricalindexdataandappliestheSVMmodelandHARfamilymodelstoanalyzeandpredicttheindex'svolatility.TheresultsprovidevaluableinsightsintothebehavioroftheShanghai50Indexandofferpredictionsforfuturemarkettrends. 1.Introduction: TheShanghai50IndexisarenownedbenchmarkfortrackingtheperformanceofthelargestandmostliquidstocksintheChinesestockmarket.Understandingitsvolatilityiscrucialforinvestors,traders,andfinancialinstitutions.Inrecentyears,machinelearningtechniques,likeSVM,andeconometricmodels,suchasHARfamilymodels,havegainedpopularityfortheirabilitytocaptureandpredictfinancialmarketmovements.ThisstudyaimstoapplythesemodelstoinvestigatethevolatilityoftheShanghai50Indexandprovideforecastsforitsfuturebehavior. 2.LiteratureReview: Inthissection,acomprehensivereviewofexistingstudiesonstockmarketvolatilityandforecastingtechniquesisconducted.TheprimaryfocusisontheapplicationandperformanceofSVMmodelsandHARfamilymodelsinfinancialtimeseriesanalysis.Thereviewhighlightsthecontributions,limitations,andgapsintheexistingliterature,providingafoundationforthecurrentresearch. 3.Methodology: 3.1Dataset: ThehistoricaldataoftheShanghai50Indexiscollectedfromareliablesource,coveringanextensiveperiod.Thekeyvariablesincludedate,closingprice,highprice,lowprice,andtradingvolumes.Pre-processingtechniques,suchasremovingoutliersandhandlingmissingdata,areimplementedtoensuredataquality. 3.2SVMModel: TheSVMmodel,awidelyusedmachinelearningalgorithm,isemployedtoanalyzethevolatilityoftheShanghai50Index.Themodelaimstoidentifypatternsandrelationshipsinthedatabymappingitintoahigher-dimensio