预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Freeman链码描述的曲线匹配方法 Title:CurveMatchingusingFreemanChainCodeDescriptors Abstract: Curvematchingisafundamentalprobleminmanycomputervisionandimageprocessingapplications,suchasshaperecognition,objecttracking,andpatternrecognition.Inthispaper,wepresentanextensivereviewoftheFreemanchaincodeasacurvematchingmethod.TheFreemanchaincodeoffersacompactandefficientrepresentationofcurves,makingitsuitableforvarioustasksrequiringshapeanalysisandrecognition.WewilldiscussthebasicprinciplesoftheFreemanchaincodeanditsapplicationincurvematching,alongwithitsadvantagesandlimitations.Additionally,wewillexploreseveraltechniquesusedforcurvematchingwithFreemanchaincodedescriptors,includingtemplatematching,distance-basedmatching,andfeature-basedmatching.TheexperimentalresultsondifferentdatasetswillalsobepresentedtodemonstratetheeffectivenessoftheFreemanchaincodeincurvematchingtasks.Finally,wewilldiscussthefuturedirectionsandpotentialadvancementsincurvematchingusingFreemanchaincodedescriptors. 1.Introduction: Curvematchingistheprocessoffindingcorrespondencesbetweentwoormorecurves,basedontheirshapeandstructure.Itplaysacrucialroleinvariousapplications,suchasshapeanalysis,objectdetectionandtracking,imageretrieval,andpatternrecognition.TheFreemanchaincodeprovidesaconciserepresentationofcurvesthatcanbeutilizedforefficientcurvematching.Inthispaper,weaimtoexplorethepotentialoftheFreemanchaincodeforcurvematching,analyzeitsadvantages,anddiscussitslimitations. 2.FreemanChainCode: TheFreemanchaincodeisacontourencodingtechniquethatrepresentsacurveasasequenceofdirections.ItisnamedafterKenFreeman,whofirstintroducedthisconceptin1961.Thechaincoderepresentsacurvebydividingitintoseveralequal-lengthsegmentsandassigningaspecificdirectioncodetoeachsegment.Theeightpossibledirectionsarerepresentedbynumbers0to7,with0representingadirectionfacingtotherightandsubsequentlyproceedinganti-clockwise.TheFreemanchaincodeoffersseveraladvantages,suchascompactrepresentation,rotationandtranslationinvariance,andefficientcomputation.