预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Sweedler四维Hopf代数上的Poisson代数结构 PoissonStructuresonSweedler4-DimensionalHopfAlgebras Introduction: Hopfalgebras,namedafterthemathematicianHeinzHopf,arealgebraicstructuresthatcombinetheconceptsofanalgebraandacoalgebra.Theyprovideausefulframeworkforstudyingalgebraicsystemswithadditionalstructuresdefinedonthem.Sweedler4-dimensionalHopfalgebras,namedafterMossSweedler,representaparticularclassofHopfalgebraswithinterestingproperties.Inthispaper,weexplorethePoissonalgebrastructureonSweedler4-dimensionalHopfalgebras,investigatingtheirpropertiesandimplications. Sweedler4-DimensionalHopfAlgebras: ASweedler4-dimensionalHopfalgebraisaHopfalgebraH=(A,m,Δ,ε,S)whereA=k[x,y]/(x^2,y^2),kisafield,misthemultiplicationmap,Δisthecomultiplicationmap,εisthecounitmap,andSistheantipodemap.Here,xandyarealgebrageneratorssubjecttotherelationsx^2=y^2=0. ThecomultiplicationmapΔ:A→A⊗A,isdefinedasΔ(x)=x⊗1+1⊗xandΔ(y)=y⊗1+1⊗y.Here,⊗denotesthetensorproductoverthefieldk. PoissonAlgebraStructures: APoissonalgebraisak-algebraAequippedwithabilinearbracket{,}:A⊗A→A,calledthePoissonbracket,satisfyingthefollowingpropertiesforalla,b,c∈A: (1){a,b}=-{b,a}(anti-symmetry) (2){a,bc}={a,b}c+b{a,c}(Leibnizrule) (3){a,{b,c}}+{b,{c,a}}+{c,{a,b}}=0(Jacobiidentity) ThePoissonbracketinducesaLiealgebrastructureonA,makingitaPoisson-Liealgebra. PoissonStructuresonSweedler4-DimensionalHopfAlgebras: ToinvestigatetheexistenceofPoissonalgebrastructuresonSweedler4-dimensionalHopfalgebras,westartbydefiningthePoissonbracketonthegeneratorsxandy.Let{x,y}denotethePoissonbracketbetweenxandy. Usingtheanti-symmetryproperty(1)ofthePoissonbracket,wehave{x,y}=-{y,x}.Also,consideringtheLeibnizrule(2)andtheJacobiidentity(3),wecandeducethefollowingproperties: (4){x,x}=0 (5){y,y}=0 (6){x,{y,y}}=0 (7){y,{x,x}}=0 (8){x,{x,y}}+{y,{x,x}}=0 (9){y,{y,x}}+{x,{y,y}}=0 ThesepropertiessuggestthatthePoissonalgebrastructureonSweedler4-dimensionalHopfalgebrasishighlyconstrained. FurtherAnalysisandImplications: ToexploretheimplicationsofthePoissonalgebrastru