预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

支持向量机的核方法研究及其在森林火灾视频识别中的应用 Abstract SupportVectorMachines(SVM)isamachinelearningalgorithmthathasbeenusedwidelyinvariousfieldssuchaspatternrecognition,textclassification,andimagerecognition.ThesuccessofSVMinmanyapplicationscanbeattributedtoitsexcellentperformanceinhandlingdatainhigh-dimensionalspaces.OneofthefeaturesthatcontributetotheexceptionalperformanceofSVMistheuseofkernelmethods.KernelmethodsofferapowerfultoolthatmakesSVMhighlyefficientinprocessingcomplexdata.Inthispaper,wewilldiscusstheuseofkernelmethodsinsupportvectormachinesanditsapplicationinforestfirevideorecognition. Introduction SupportVectorMachines(SVM)isawidelyusedmachinelearningalgorithmthatisbasedonusingdecisionboundariestoclassifydata.OneoftheprimaryreasonsforSVM'sefficacyinvariousapplicationsisitsabilitytohandledatainhigh-dimensionalspacesefficiently,thankstoitskernelmethods.Kernelmethodsprocessdatausingamappingtechniquethattransformsthedatapointsinalow-dimensionalspacetoahigher-dimensionalspace,whereasimplelinearclassifiercanthenclassifythedata.Inthispaper,wewillreviewthemostpopularkernelfunctionsanddiscusstheiradvantagesanddisadvantages.Additionally,wewillpresentanexampleofhowwecanapplySVMswithkernelmethodsinidentifyingforestfiresinvideodata. KernelmethodsinSupportVectorMachines Kernelmethodsaremathematicaltoolsusedtoapplyalinearclassifiertononlineardatainahigh-dimensionalspace.TheideabehindinstallingkernelmethodsinSVMsisthatthedecisionboundarycanbetransformedtoahigher-dimensionalspace,whichwillallowforasimplelinearclassifiertodividethedataintotwoormoreclasseseffectively.Theuseofkernelmethodstomapdecisionboundariestoahigher-dimensionalspaceisknownasthekerneltrick.InSVM,thekernelfunctionscanbeclassifiedintotwoprimarycategories:linearkernelfunctionsandnonlinearkernelfunctions. Linearkernelfunctionsarethesimplestkernelfunctions.Thelinearkernelfunctioncanbewrittenas: K(x,y)=xTy Wherexandyareinputvectors.Thelinearkernelfunctionisusedwhenthedataislinearlyseparable.Althoughthelinearkernelfunctionisless