基于MFCC和GMM语音转换技术研究.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于MFCC和GMM语音转换技术研究.docx
基于MFCC和GMM语音转换技术研究摘要:本文研究了基于MFCC和GMM语音转换技术,并结合常见的音频编辑软件实现了一种简单而高效的语音转换方法。该方法主要基于MFCC(Mel频率倒谱系数)特征提取和GMM(高斯混合模型)训练,利用GMM模型映射和转换源语音信号,从而实现音高、音色等属性的变换。实验结果验证了该方法的有效性和可行性。关键词:MFCC;GMM;语音转换;音高;音色1.简介:语音转换是指将一段源语音信号变换为与之相似的目标语音信号。语音转换技术在物联网、智能音箱、虚拟角色等领域有着广泛应用。本
基于MFCC和GMM语音转换技术研究的中期报告.docx
基于MFCC和GMM语音转换技术研究的中期报告1.研究背景语音转换技术是指将一个发音人的语音转换为另一个发音人的语音,这在语音合成、语音识别、声纹识别等领域有着广泛的应用。现有的语音转换技术主要分为基于统计和基于神经网络两种类型。其中,基于统计的语音转换技术主要利用MFCC和GMM来实现。2.研究内容本研究以MFCC和GMM为基础,探究了基于统计的语音转换技术。具体内容如下:2.1MFCC特征提取MFCC是一种将语音信号转化成M个Mel频率倒谱系数的技术。它的特点是可以有效地对语音信号进行降维,并去除噪声
基于GMM和BP网络的语音转换系统设计的中期报告.docx
基于GMM和BP网络的语音转换系统设计的中期报告一、研究背景和意义语音转换是指对给定的一段输入语音进行处理,使其具有与目标说话人相似的特征,从而实现语音转换。语音转换技术在语音合成、说话人识别等领域中有着广泛的应用,在语音处理领域具有重要的研究意义和应用价值。二、研究内容本文主要研究基于高斯混合模型(GMM)和BP神经网络的语音转换系统设计。具体研究内容包括:1.语音特征提取:提取语音信号的Mel频率倒谱系数(MFCC)作为输入特征。2.说话人聚类:采用GMM模型对不同说话人的MFCC特征进行聚类分析,得
基于MFCC的语音评分方法研究.docx
基于MFCC的语音评分方法研究基于MFCC的语音评分方法研究摘要:近年来,随着语音识别和语音合成技术的快速发展,语音评分也成为了一个重要的研究领域。在语音评分中,传统的基于声学特征的评分方法已经取得了一定的成绩,但是仍然面临着一些挑战。本文提出了一种基于MFCC的语音评分方法,通过提取语音的MFCC特征,将其作为评分的依据,实现了更准确和精确的语音评分。实验证明,本方法在语音评分中具有较高的准确率和鲁棒性。1.引言语音评分是指根据语音的质量和准确性对其进行打分的过程。语音评分在语音识别、语音合成和语音解析
基于声道参数建模和变换的语音转换技术研究.docx
基于声道参数建模和变换的语音转换技术研究基于声道参数建模和变换的语音转换技术研究摘要:语音转换技术是指将一个说话者的语音特征转换为另一个说话者的语音特征,从而实现说话者身份转换或语音风格转换的过程。声道参数建模和变换是一种常用的语音转换技术,通过建立说话者的声道模型,并将其应用于目标说话者的语音中,可以实现较好的语音转换效果。本文主要研究基于声道参数建模和变换的语音转换技术,并对其进行综述和分析。第一节:引言语音转换技术在语音合成、语音识别等领域都有着广泛的应用。语音转换技术主要分为基于声学特征的语音转换