预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于MapReduce的非线性支持向量机分类算法研究 Abstract: SupportVectorMachines(SVMs)havebeenwidelyusedinclassificationduetotheirexcellentclassificationperformance.However,traditionalSVMshavetheproblemofhighcomputationalcomplexitywhendealingwithalargeamountofdata.Tosolvethisproblem,theMapReduce-basedSVMalgorithmhasbeenproposed,whichcaneffectivelyimprovethecomputationalefficiencyofSVMsinlargedataenvironments.Inthispaper,wefocusontheresearchofMapReduce-basednon-linearSVMclassificationalgorithms. 1.Introduction SupportVectorMachines(SVMs)havebeenwidelyusedinmachinelearning,especiallyinclassificationproblems.SVMsarecharacterizedbytheirexcellentgeneralizationabilityandhighclassificationaccuracy.SVMsachieveoptimalclassificationbyfindingthebesthyperplanethatmaximallyseparatesthetwoclasses.ThetraditionalSVMalgorithmhasthecharacteristicsofhighclassificationaccuracy,butwhenitfaceslarge-scaledata,itscomputationalcomplexityisveryhigh,whichlimitsitsapplicationinsomescenarios.Tosolvethisproblem,MapReduce-basedSVMalgorithmshavebeenproposed,whichcaneffectivelyimprovethecomputationalefficiencyofSVMsinlarge-scaledataenvironments. 2.OverviewofMapReduce MapReduceisadistributedcomputingframeworkthathasbeenwidelyusedinbigdataprocessing.TheMapReduceframeworkprocessesbigdatainparallelonmultiplenodes,whichgreatlyimprovesthecomputationalefficiencyofbigdataprocessing.TheMapReduceframeworkconsistsoftwophases:MapandReduce.IntheMapphase,theinputdataisdividedintomultiplesubtasksandisprocessedinparallelonmultiplenodes.IntheReducephase,theresultsoftheMapphasearethenshuffledandsorted,andthefinaloutputisgenerated. 3.MapReduce-basedSVMAlgorithm TheMapReduce-basedSVMalgorithmcanefficientlyprocesslarge-scaledatabydividingthedataintosubsetsandprocessingtheminparallel.TheMapReduce-basedSVMalgorithmconsistsofthefollowingsteps: (1)Datapreprocessing Inthisstep,theinputdataispreprocessedtoprepareitfortheSVMalgorithm.Thedataisnormalizedandfeaturescalingisperformed. (2)Dividedataintosubsets Thelarge-scaleinputdataisdividedintomulti