预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于LabVIEW和神经网络方法的在线温度控制系统研究 Abstract Withtherapiddevelopmentoftechnology,thereisagrowingdemandfortheautomationoftemperaturecontrolsystemsinvariousapplications.ThispaperproposesanovelonlinetemperaturecontrolsystembasedonLabVIEWandneuralnetworkmethods.ThesystemconsistsofLabVIEWsoftwareandhardwaremodules,whichisusedtocollectandanalyzethetemperaturedataandcontrolthetemperaturebasedontheneuralnetworkmodel.Thesystemprovidesaconvenientwaytocontroltemperatureinvariousapplicationswithhighaccuracyandefficiency.Variousexperimentshavebeenconductedtovalidatetheeffectivenessoftheproposedsystem,andtheresultsdemonstratethattheproposedsystemcanachievebetterperformancecomparedtotraditionaltemperaturecontrolmethods. Introduction Thetemperaturecontrolsystemplaysacrucialroleinmanyfieldssuchaschemical,pharmaceutical,andbiotechnologyindustries.Accuratetemperaturecontrolisessentialtoensurethequalityoftheproductsandprocesssafety.TraditionaltemperaturecontrolsystemsrelyonPIDcontrollers,whichrequiremanualtuningandarelimitedtolinearsystems.Withthedevelopmentofneuralnetworktechnology,theonlinetemperaturecontrolsystembasedonLabVIEWandneuralnetworkmethodshasbeendeveloped,whichcanhandlenonlinearsystemsandprovidehigheraccuracy. Theproposedsystemconsistsoftwoparts:dataacquisitionandcontrol.Thedataacquisitionpartcollectsthetemperaturedataandsendsittothecontrolpart.Thecontrolpartanalyzesthetemperaturedataandsendsbackthecontrolsignalstoadjustthetemperature.Inthecontrolpart,aneuralnetworkmodelisusedtopredictthetemperature,andthecontrolsignalsaregeneratedbasedonthepredictedtemperature. NeuralNetworkModel Neuralnetworkmodelsarewidelyusedinnonlinearsystemidentificationandcontrol.Inthispaper,weusethebackpropagationalgorithmtotrainafeedforwardneuralnetworkmodel.Theinputoftheneuralnetworkisthetemperaturedata,andtheoutputisthepredictedtemperature.ThearchitectureoftheneuralnetworkisshowninFig.1. Theneuralnetworkhastwohiddenlayerswith20neuronsineachlayer.Thesigmoidfunctionisusedastheactivationfunctioninthehidden