预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Siegel上半空间上的Bergman空间 Introduction: TheSiegelupperhalf-spaceisacomplexmanifoldoftheseconddegreeanditisdenotedbyHg.ItsstructureisverysimilartothePoincaréhalf-planemodelofthehyperbolicspace,anditisanimportantspaceinthestudyofmodularforms.TheBergmanspaceisaveryimportantobjectinthetheoryofseveralcomplexvariables,whichwasintroducedbyBergmaninthe1950s.Itisaspaceofholomorphicfunctionsonacomplexmanifold,whichisequippedwithanaturalinnerproduct.Inthisarticle,wewilldiscusstheBergmanspaceontheSiegelupperhalf-space. Definitions: TheSiegelupperhalf-spaceHgisdefinedasthesetofg×gcomplexsymmetricmatricesZwithpositivedefiniteimaginarypart.TheBergmanspaceonHgisthespaceofholomorphicfunctionsonHg,denotedbyA2(Hg),whicharesquare-integrablewithrespecttotheBergmankernel.TheBergmankernelonHgisdefinedasfollows: K(Z,W)=det((i/2π)(Z+W))^-g, whereZ,W∈Hg.Afunctionf∈A2(Hg)ifitsatisfiesthefollowingconditions: 1.fisholomorphiconHg, 2.fissquare-integrablewithrespecttotheBergmankernel,i.e.,∫Hg|f(Z)|^2K(Z,Z)dV(Z)<∞, 3.Thesetoffunctions{K(Z,W)^-1/2f(W)}isanorthonormalbasisforA2(Hg),whereV(Z)isthevolumeformofHg. Properties: 1.A2(Hg)isafinite-dimensionalHilbertspace.Itsdimensionisgivenbytheformula: dim(A2(Hg))=(g+1)(g+2)/2. 2.TheBergmanspacehasareproducingproperty,i.e.,foranyfixedZ∈Hgandf∈A2(Hg),theevaluationfunctionalΦZ(f)definedbyΦZ(f)=f(Z)iscontinuousonA2(Hg). 3.TheBergmanspaceisinvariantundertheactionofthediscretegroupΓgofsymplecticmatriceswithintegercoefficientsanddeterminant1.ThisgroupactsonHgbyfractionallineartransformations,andtheactionpreservestheBergmankernelandthevolumeform.Thus,thebasisfunctions{K(Z,W)^-1/2f(W)}areautomorphicformsofweight0forΓg. Applications: TheBergmanspaceonHghasmanyimportantapplicationsincomplexanalysis,numbertheory,andphysics.Severalexamplesarelistedbelow: 1.TheBergmanspacesonthecomplexupperhalf-planeandtheSiegelupperhalf-spaceareusedtostudythemodularformsandautomorphicforms.Infact,theFouriercoefficientsofamodularformoranautomorphicformcanbeexpressedintermsofthenormsofcert