预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

容积卡尔曼滤波在车辆定位中的应用研究 Abstract摘要 Withtherapiddevelopmentofautonomousdrivingtechnology,accurateandreliablevehiclepositioningiscrucialforensuringthesafetyandefficiencyoftransportationsystems.Inrecentyears,theKalmanfilterhasbeenwidelyusedinvehiclepositioningduetoitseffectivenessinfusingnoisysensormeasurementsandpredictingvehiclestates.Inthispaper,weinvestigatetheapplicationofthevolumetricKalmanfilterinvehiclepositioningandevaluateitsperformancethroughsimulationsandexperiments.TheresultsdemonstratethatthevolumetricKalmanfiltercaneffectivelyimprovetheaccuracyandrobustnessofvehiclepositioning,makingitapromisingapproachforfutureautonomousdrivingsystems. 1.Introduction引言 Vehiclepositioningisafundamentaltaskinautonomousdrivingsystemsasitprovidescriticalinformationaboutthevehicle'slocationandorientation.Traditionalapproachestovehiclepositioningrelyonglobalnavigationsatellitesystems(GNSS),whichsufferfromlimitationsinurbanareaswithtallbuildingsandinenvironmentswithsignalobstructions.Toovercometheselimitations,integratingmultiplesensormeasurements,suchasinertialsensors,wheelodometry,andenvironmentalperceptiondata,hasbecomeapopularsolution. TheKalmanfilterisarecursiveestimationalgorithmthathasbeenwidelyusedinvehiclepositioningduetoitsabilitytofusenoisysensormeasurementsandpredictvehiclestates.However,traditionalKalmanfiltersassumethatthevehicle'sstateisapointestimate,neglectingitsuncertaintyorambiguity.Thiscanleadtoinaccurateestimates,especiallyincomplexurbanenvironments. Toaddressthisissue,thevolumetricKalmanfilterhasbeenproposedasanextensionofthetraditionalKalmanfilter.ThevolumetricKalmanfilterrepresentsthevehicle'sstateasaprobabilitydistributionintheformofaGaussianvolume,ratherthanapointestimate.Byconsideringtheuncertaintyofthevehicle'sstate,thevolumetricKalmanfiltercanprovidemorerobustandaccurateestimatesofthevehicle'spositionandorientation. 2.Methodology方法 ThevolumetricKalmanfilteroperatesinasimilarmannertothetraditionalKalmanfilter,butwithadifferentstaterepresentationandcovari