预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共49页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第四章复合材料的制备4.1复合材料的基本概念和性能 4.2树脂基复合材料的制备方法 4.3金属基复合材料的制备方法 4.4陶瓷基复合材料的制备方法 4.5碳/碳复合材料的制备方法4.4陶瓷基复合材料的制备方法4.4.1陶瓷基基复合材料的基体与增强体陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。玻璃球b.晶须: 晶须为具有一定长径比(直径0.3~1m,长0~100m)的小单晶体。晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度。 由于晶须具有最佳的热性能、低密度和高杨氏模量,从而引起了人们对其特别的关注。 在陶瓷基复合材料中使用得较为普遍的是SiC、A12O3及Si3N4晶须。颗粒 从几何尺寸上看,颗粒在各个方向上的长度是大致相同的,一般为几个微米。 颗粒的增韧效果虽不如纤维和晶须。但是,如果颗粒种类、粒径、含量及基体材料选择适当仍会有一定的韧化效果,同时还会带来高温强度,高温蠕变性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究。 常用的颗粒也是SiC、Si3N4等。1.纤维增强陶瓷基复合材料 在陶瓷材料中,加入第二相纤维制成复合材料是改善陶瓷材料韧性的重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大优于其横向性能。 在实际构件中,主要是使用其纵向性能。在单向排布纤维增韧陶瓷基复合材料中,当裂纹扩展遇到纤维时会受阻,这时,如果要使裂纹进一步扩展就必须提高外加应力。 这一过程的示意图如下:裂纹垂直于纤维方向扩展示意图单向排布纤维增韧陶瓷只是在纤维排列方向上的纵向性能较为优越,而其横向性能显著低于纵向性能,所以只适用于单轴应力的场合。而许多陶瓷构件则要求在二维及三维方向上均具有优良的性能,这就要进一步研究多向排布纤维增韧陶瓷基复合材料。二维多向排布纤维增韧复合材料的纤维的排布方式有两种:一种是将纤维编织成纤维布,浸渍浆料后,根据需要的厚度将单层或若干层进行热压烧结成型,如下图所示。纤维层纤维层三维多向编织纤维增韧陶瓷是为了满足某些情况的性能要求而设计的。 这种材料最初是从宇航用三向C/C复合材料开始的,现已发展到三向石英/石英等陶瓷复合材料。下图为三向正交C/C纤维编织结构示意图。它是按直角坐标将多束纤维分层交替编织而成。X这种三维多向编织结构还可以通过调节纤维束的根数和股数,相邻束间的间距,织物的体积密度以及纤维的总体积分数等参数进行设计以满足性能要求。2.晶须和颗粒增强陶瓷基复合材料由于晶须的尺寸很小,从宏观上看与粉末一样,因此在制备复合材料时,只需将晶须分散后与基体粉末混合均匀,然后对混好的粉末进行热压烧结,即可制得致密的晶须增韧陶瓷基复合材料。 目前常用的是SiC,Si3N4,Al2O3晶须,常用的基体则为Al2O3,ZrO2,SiO2,Si3N4及莫来石等。 晶须增韧陶瓷基复合材料的性能与基体和晶须的选择、晶须的含量及分布等因素有关。由于晶须具有较大的长径比,因此,当其含量较高时,因其桥架效应而使致密化变得因难,从而引起了密度的下降并导致性能的下降。 为了克服这一弱点,可采用颗粒来代替晶须制成复合材料,这种复合材料在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。当所用的颗粒为SiC,TiC时,基体材料采用最多的是Al2O3,Si3N4。目前,这些复合材料已广泛用来制造刀具。 晶须与颗粒对陶瓷材料的增韧均有一定作用,且各有利弊: 晶须的增强增韧效果好,但含量高时会使致密度下降;颗粒可克服晶须的一弱点,但其增强增韧效果却不如晶须。4.4.3纤维增强陶瓷基复合材料的制备正因为有如此多的影响因素,所以在实际中针对不同的材料的制作方法也会不同,成型技术的不断研究与改进,正是为了能获得性能更为优良的材料。1.泥浆烧铸法 这种方法是在陶瓷泥浆中分散纤维。然后浇铸在石膏模型中。这种方法比较古老,不受制品形状的限制。但对提高产品性能的效果显著,成本低,工艺简单,适合于短纤维增强陶瓷基复合材料的制作。2.热压烧结法 将特长纤维切短(<3mm),然后分散并与基体粉末混合,再用热压烧结的方法即可制得高性能的复合材料。 这种方法中,纤维与基体之间的结合较好,是目前采用较多的方法。这种短纤维增强体在与基体粉末混合时取向是无序的,但在冷压成型及热压烧结的过程中,短纤维由于在基体压实与致密化过程中沿压力方向转动,所以导致了在最终制得的复合材料中,短纤维沿加压面而择优取向,这也就产生了材料性能上一定程度的各向异性。3.浸渍法 这种方法适用于长纤维。首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干