预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于遗传算法的工厂AGV路径优化研究 Abstract FactoryAGV(AutomatedGuidedVehicle)systemisacrucialaspectofmodernsmartmanufacturing,whichfacilitatesefficientmaterialhandlingoperations.However,optimizingthepathofAGVsinafactorypresentsachallengingComputationalintelligenceproblem.Inthispaper,weproposeanovelapproachusingaGeneticAlgorithm(GA)tooptimizeAGVpathsinafactory.OurresearchaimstodemonstratethatGAapproachescansignificantlyimprovetheefficiencyofAGVrouting,andachieveoptimalsolutionsintermsofdistancetraveledandtimespent.OurexperimentalresultssuggestthatusingGAsignificantlyreducesthedistancetraveled,andthetimetakenbyAGVscomparedtoexistingalgorithms. Keywords:AGV;Pathoptimization;GeneticAlgorithm;Smartmanufacturing Introduction AutomatedGuidedVehicles(AGVs)havegainedwidespreadadoptioninmodernmanufacturingfacilitiesowingtotheirabilitytoaccuratelycarryoutarangeofmaterialhandlingoperationswithinthefacilitywithouttheneedforhumanintervention.AGVscanbeusedtotransportrawmaterials,workpieces,finishedgoods,andtoolingaroundthefacilitytostreamlinematerialhandlingoperations.TheabilityofAGVstooperateautonomouslyhelpstoreducelaborcostsandincreaseoverallefficiencyinmanufacturingfacilities.Asaresult,theoptimalroutingofAGVsinfactorieshasattractedsignificantattentionfromtheresearchcommunity. AGVroutinginfactoriesisacomplextaskthatrequiresoptimizationtominimizethedistancetraveledbyAGVswhilemaximizingefficiency.Thepathoptimizationproblemrequiresconsiderationofseveralvariables,includingthelocationofpick-upanddrop-offpoints,thenumberofvehiclesinthesystem,thecapacityofeachvehicle,andthelayoutofthefactory,amongothers.Traditionaloptimizationalgorithmshavelimitationsinefficientlysolvingtheproblemduetothecomplexityofthetask.Asaresult,theresearchcommunityhasexploredcomputationalintelligenceapproachessuchasSwarmIntelligenceandGeneticAlgorithms(GAs)tooptimizeAGVrouting. GeneticAlgorithms(GAs) GeneticAlgorithms(GAs)arestochasticoptimizationtechniquesthatareinspiredbythebiologicalprocessesofnaturalselectionandgenetics.Th