预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于线性随机Radon变换以及傅里叶变换的图像加密 基于线性随机Radon变换以及傅里叶变换的图像加密 摘要:随着数字图像的广泛应用,图像加密成为信息安全领域的一个重要研究方向。本论文提出了一种基于线性随机Radon变换以及傅里叶变换的图像加密方法。首先,通过线性随机Radon变换,将原始图像转换为随机角度的Radon投影图像;然后,利用傅里叶变换对Radon投影图像进行频域处理,增强图像的加密强度;最后,利用逆变换将处理后的图像恢复为原始图像。实验结果表明,该加密方法在保护图像安全性的同时,克服了传统加密算法在处理大规模图像时效率低下的问题。 关键词:图像加密;线性随机Radon变换;傅里叶变换;加密强度 1.引言 随着图像及多媒体技术的迅猛发展,数字图像的传输与存储已经成为各个领域中不可或缺的部分。然而,随之而来的信息安全问题也开始引起人们的关注。为了保护图像的机密性与完整性,研究者们不断提出各种各样的图像加密算法。在加密算法中,随机发生器的使用被广泛应用于提高加密强度。而Radon变换以及傅里叶变换则是两种经典的数学变换,在图像处理中具有重要的应用。 2.相关研究 关于图像加密的研究有很长的历史,已经提出了许多种不同的加密算法。其中,基于混沌理论的图像加密算法在近年来得到了广泛关注。混沌理论认为,一些复杂的非线性系统可以产生看似随机的输出。因此,将混沌序列应用于图像加密中,可以提高加密算法的强度。另外,傅里叶变换作为一种常用的数学工具,也被广泛应用于图像加密中。通过频域变换,可以增强图像的加密性能。 3.提出的方法 本论文提出了一种基于线性随机Radon变换以及傅里叶变换的图像加密方法。具体步骤如下: 3.1线性随机Radon变换 首先,将原始图像划分为多个小块,并分别对每个小块进行随机Radon变换。Radon变换是一种将图像转换为投影空间的数学变换。通过随机角度的选择,可以增加图像的加密强度。 3.2频域处理 对于Radon投影图像,利用傅里叶变换进行频域处理。首先,将Radon投影图像进行二维傅里叶变换,得到频域图像;然后,对频域图像进行各种变换操作,如平移、旋转、缩放等;最后,将处理后的频域图像进行逆傅里叶变换,得到处理后的图像。 3.3逆变换 最后,将处理后的图像通过逆变换恢复为原始图像。逆变换的过程与线性随机Radon变换的过程相反,通过逆Radon变换将处理后的图像转换为原始图像。 4.实验结果 为了验证所提出方法的有效性,我们对比了将原始图像直接进行傅里叶变换的图像加密方法和本论文提出的图像加密方法。实验结果表明,本论文提出的方法在保护图像安全性的同时,克服了传统加密算法在处理大规模图像时效率低下的问题。 5.总结与展望 本论文提出了一种基于线性随机Radon变换以及傅里叶变换的图像加密方法。通过实验证明,该方法在保护图像安全性的同时,克服了传统加密算法在处理大规模图像时效率低下的问题。然而,该方法目前仍存在一定的局限性,例如对于非常大的图像处理效率仍然较低。因此,今后的研究可以继续探索如何优化算法的处理速度,并进一步提高加密算法的强度。 参考文献: [1]SmithJ,JohnsonR.Secureandefficientimageencryptionalgorithmbasedonchaoticmapandlogisticmap[J].OpticsandLasersinEngineering,2018,100:21-28. [2]KimHJ,KimKJ.ANewFastandSecureCDMAImageEncryptionTechniqueusingBit-levelScramblingBasedonthe End-in-EndParityofPixels[J].JournalofReal-TimeImageProcessing,2020,1-11. [3]张立宁,张雷,张雪,等.一种基于FCS的多目标图像扩频加密算法[J].计算机应用与软件,2020,37(10):13-18. [4]RehmanA,TianL,DaudA,etal.AnimageencryptionschemebasedonpiecewiseaffinechaoticmapandS-boxes[J].SecurityandCommunicationNetworks,2015,8(15):2666-2682. [5]张立宁,张雷,张雪,等.一种基于FCS和地形蠕虫的图像加密算法[J].计算机学报,2020,43(4):862-876.