预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于振动信号分析的滚动轴承故障诊断方法研究 Title:ResearchonFaultDiagnosisMethodforRollingBearingBasedonVibrationSignalAnalysis Abstract:Rollingbearingsarewidelyusedinmanymechanicalsystemsandplayacrucialroleinensuringthenormaloperationandreliabilityoftheequipment.However,duetovariousfactorssuchasworkingconditions,insufficientlubrication,andmanufacturingdefects,rollingbearingsarepronetofailures,whichcanleadtosignificanteconomiclossesandsafetyhazards.Therefore,thedevelopmentofeffectivefaultdiagnosismethodsforrollingbearingsisofgreatsignificance.Thispaperfocusesontheresearchandanalysisoffaultdiagnosismethodsforrollingbearingsbasedonvibrationsignalanalysis. Introduction: 1.Backgroundandsignificanceofrollingbearingfaultdiagnosis 2.Overviewofvibrationsignalanalysisforfaultdiagnosis 3.Researchobjectivesandorganizationofthepaper TheoreticalBasis: 1.Workingprincipleofrollingbearings 2.Commontypesofrollingbearingfaults 3.Vibrationsignalcharacteristicsofrollingbearingfaults Methods: 1.Dataacquisitionandpreprocessing -Useofvibrationsensorstocollectbearingvibrationsignals -Preprocessingtechniquessuchasfiltering,resampling,andnoisereduction 2.Featureextraction -Time-domainfeatures:rootmeansquare(RMS),crestfactor,kurtosis,etc. -Frequency-domainfeatures:autopowerspectrumdensity(APSD),envelopespectrumanalysis,etc. -Time-frequencydomainfeatures:wavelettransform,short-timeFouriertransform(STFT),etc. 3.Featureselectionandfusion -Selectionofeffectivefeaturesusingstatisticalmethods,suchasmean,standarddeviation,andcorrelationcoefficients -Combinationofmultiplefeaturesthroughfusionmethods,suchasprinciplecomponentanalysis(PCA)andartificialneuralnetworks(ANN) 4.Faultpatternrecognition -Constructionoffaultpatternrecognitionmodels,suchassupportvectormachines(SVM)anddecisiontrees -Trainingandtestingofthemodelsusinglabeleddatasets -Evaluationofthemodels'performanceusingmetricssuchasaccuracy,precision,andrecall CaseStudies: 1.Experimentalsetupandparametersettings 2.Collectionofrollingbearingvibrationsignalsunderdiffer